a2 United States Patent
Adi et al.

US009280335B2

US 9,280,335 B2
*Mar. 8, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SEMANTICALLY RICH COMPOSABLE
SOFTWARE IMAGE BUNDLES

(735)

(73)

")

@
(22)

(65)

(1)
(52)

(58)

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

US 2012/0084769 Al

Int. Cl1.

GO6F 9/445

U.S. CL
CPC

Asaf Adi, Qiryat Ata (IL); William C.
Arnold, Newburgh, NY (US); Daniel C.
Berg, Holly Springs, NC (US); Tamar
Eilam, New York, NY (US); Dinakaran
Joseph, Apex, NC (US); Michael H.
Kalantar, Chapel Hill, NC (US);
Alexander Kofman, Haifa (IL);
Alexander V. Konstantinou, New York,
NY (US); Tova Roth, Woodmere, NY
(US); Edward C. Snible, Bronx, NY
(US); Harm Sluiman, Toronto (CA);
Ruth E. Willenborg, Apex, NC (US);
Matt R. Hogstrom, Cary, NC (US); Jose
I. Ortiz, Raleigh, NC (US)

International Business Machines
Corporation, Armonk, NY (US)

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 131 days.

This patent is subject to a terminal dis-
claimer.

12/895,461
Sep. 30, 2010

Prior Publication Data

Apr. 5,2012

(2006.01)

GO6F 8/63 (2013.01)

Field of Classification Search

None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,950,011 A 9/1999 Albrecht et al.
5,970,490 A 10/1999 Morgenstern
6,256,773 Bl 7/2001 Bowman-Amuh
6,629,065 Bl 9/2003 Gadh et al.
6,640,238 B1 10/2003 Bowman-Amuah
6,701,514 Bl 3/2004 Haswell et al.
6,789,054 Bl 9/2004 Makhlouf
6,795,089 B2 9/2004 Rajarajan et al.
6,985,901 B1* 1/2006 Sachseetal.ccoenennne. /1
(Continued)
FOREIGN PATENT DOCUMENTS
WO 2012000809 1/2012
WO 2012006638 1/2012
OTHER PUBLICATIONS

U.S. Appl. No. 12/476,006, filed Jun. 1, 2009, inventors Arnold et al.,
Virtual Solution Composition and Deployment System and Method.

(Continued)

Primary Examiner — Evral Bodden

(74) Attorney, Agent, or Firm — Fleit Gibbons Gutman
Bongini & Bianco PL; Jon A. Gibbons

(57) ABSTRACT

A composable software bundle is created by retrieving a
semantic representation of a set of software modules. A func-
tional representation of a set of operations is retrieved. Each
operation in the set of operations is to be performed on the set
of software modules during at least one virtual image life-
cycle phase in a set of virtual image life-cycle phases. A set of
artifacts including a set of executable instructions associated
with the set of operations is identified. The semantic repre-
sentation, the functional representation, and the set of arti-
facts, are stored in a composable software bundle.

24 Claims, 38 Drawing Sheets

3106
N\ BASEMAGE ST 3104 5”5\ 5‘20\ .
X SEANTIC MOZEL 4 < "
312 B SEMANTIC MODEL. FUNCTIONAL MODEL 3126
: WAS | [CPLAS ISTALL | [OPZ CONFIG THREAD POOL
VRTUAL DISKS) — N
SEST 310 et 312 3124 O3 WASRESET
_=%i08 Hpp- S| 3108
FUNCTIONAL MODEL
CP L NETCONFIG S
[26
\
2102
3132
N NEW INAGE ASSET 3151

NTIC MODEL

 sa I
B
21?:3 Bli2 VIRTUAL DISKS)

3134
FUNCTIONAL MODEL =

M4~ OPLNETCONIG OP 3; WAS RESET
{ACTIVATION) {REST)

|- 3130

31261\ _| 0P 2, CONFIG THREAD

POOL (ACTIVATION)

\
3128

US 9,280,335 B2
Page 2

(56)

7,050,872
7,069,541
7,069,553
7,103,874
7,134,122
7,152,229
7,196,712
7,245,761
7,320,120
7,370,315
7,463,263
7,568,019
7,630,877
7,643,597
7,665,085
7,669,137
7,712,086
7,735,062
7,779,383
7,849,460
7,900,201
7,962,891
8,095,631
8,209,687
8,281,307
2003/0037327
2003/0084156
2003/0163450
2004/0179011
2005/0055692
2005/0120335
2005/0198244
2005/0289538
2006/0053410
2006/0066627
2006/0101091
2006/0101445
2006/0230314
2006/0235733
2006/0271909
2007/0050764
2007/0055972
2007/0074203
2007/0078988
2007/0168925
2007/0179823
2007/0277151
2007/0288885
2008/0028365
2008/0082959
2008/0120350
2008/0127049
2008/0183725
2008/0235506
2008/0244595
2008/0250405
2008/0307414
2008/0313008
2008/0313595
2008/0313596
2009/0006069
2009/0007062
2009/0012842
2009/0044170
2009/0077621
2009/0132562
2009/0133014
2009/0171993
2009/0249279
2009/0249281
2009/0278847
2009/0319239
2009/0319467
2010/0017797
2010/0030893

References Cited

U.S. PATENT DOCUMENTS

B2
B2
B2
B2
Bl
B2
B2
B2
B2
Bl
B2
Bl
B2
B2
B2
B2
B2
B2
B2
Bl
Bl
B2
B2
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

5/2006
6/2006
6/2006
9/2006
11/2006
12/2006
3/2007
7/2007
1/2008
5/2008
12/2008
7/2009
12/2009
1/2010
2/2010
2/2010
5/2010
6/2010
8/2010
12/2010
3/2011
6/2011
1/2012
6/2012
10/2012
2/2003
5/2003
8/2003
9/2004
3/2005
6/2005
9/2005
12/2005
3/2006
3/2006
5/2006
5/2006
10/2006
10/2006
11/2006
3/2007
3/2007
3/2007
4/2007
7/2007
8/2007
11/2007
12/2007
1/2008
4/2008
5/2008
5/2008
7/2008
9/2008
10/2008
10/2008
12/2008
12/2008
12/2008
12/2008
1/2009
1/2009
1/2009
2/2009
3/2009
5/2009
5/2009
7/2009
10/2009
10/2009
11/2009
12/2009
12/2009
1/2010
2/2010

Matheson

Dougherty et al.
Narayanaswamy et al.
McCollum et al.

Sero et al.

Chong et al.

Rajarajan et al.

Swaminathan et al.

Rajarajan et al.

Lovell et al.

Gilboa

Bhargava et al.

Brown et al.

Liu et al.

Sundararajan et al.

Chafe et al.

Hughes etal. 717/131
De Seabra e Melo et al.
Bornhoevd et al.

Martin et al.

Qureshi et al.

Kimelman et al.

Manico et al.

Yuyitung et al.

Arnold et al.cccccovvvnrne 718/1
Cicciarelli et al.

Graupner et al.

Borenstein et al.

Marshall

Lupini et al.

Kelley et al.

Eilam et al.

Black-Ziegelbein et al.

Charisius et al.
Gerhard et al.
Carbajales et al.
Carbajales et al.
Sanjar et al.
Marks

Huang et al.
Traut

Brown et al.
Curtis et al.
Miloushev et al.
Bornhoevd et al.
Bhaskaran et al.
Brunel et al.
Brunel et al.

Erl

Fowler
Grabowski et al.
Elaasar
Blakeley et al.
Eilam et al.
Eilametal.ccceonee. 718/104
Farhangi et al.

Alpernetal. ..o 718/1
Lee et al.

Boulineau et al.

Kreamer et al.

Alam et al.

Gilboa

Srinivasan et al.

Bernardi et al.

Lang et al.

Mehr et al.

Laurila et al.

Arthursson

Bourdoncccevennn 717/101
Fritzsche et al.

Berget al.

Arnold et al.

Berget al.

Hwang

Berget al.

........... 709/227

........... 707/202

2010/0031247 Al 2/2010 Arnold et al.

2010/0054527 Al 3/2010 Kirmse et al.

2010/0058331 Al 3/2010 Bergetal.

2010/0070449 Al 3/2010 Arnold et al.

2010/0077428 Al 3/2010 Arnold et al.

2010/0083212 Al 4/2010 Fritzsche et al.

2010/0138795 Al 6/2010 Berget al.

2010/0186009 Al* 7/2010 Senetal. 717/178
2010/0287280 Al* 11/2010 Sivan 709/226
2010/0306772 Al 12/2010 Arnold et al.

2011/0016074 Al 1/2011 Berget al.

2011/0029967 Al 2/2011 Berget al.

2011/0283138 Al 112011 Sangubhatla et al.

2012/0005691 Al 1/2012 Wong et al.

2012/0011028 Al 1/2012 Thomas

2012/0011432 Al 1/2012 Strutton

2012/0081395 Al* 42012 Adietal. ... 345/634
2012/0084769 Al 4/2012 Adietal

2013/0332900 Al* 12/2013 Bergetal. ..o 717/121
2013/0332901 Al* 12/2013 Bergetal. ..o 717/121

OTHER PUBLICATIONS

Reimer, D., et al, “Opening Black Boxes: Using Semantic
Informaton to Combat Virtual Machine Image Sprawl,” ACM978-1-
59593-796-4/08/03; Mar. 5-7, 2008, Seattle, Washington, Copyright
2008.

Sinnema, M., et al., “COVAMOF: A Framework for Modeling Vari-
ability in Software Product Families,” University of Groningen, The
Netherlands, 2004-2005.

Pons, A.P. “Semantic Prefetching Objects of Slower Web Site Pages,”
pp. 1715-1724; Science Direct 2006.

Green, AR, et al., “Modular, Best-Practice Solutions for a Semantic
Web-Based Digital Library Application,” National Council for Sci-
ence and Technology, Mexico and National Autonomous University
of Mexico, 2007-2008.

Arnold, W., et al., “Pattern Based SOA Deployment,” Service-Ori-
ented Computing; ICSOC 2007.

Eilam, T., et al., “Pattern-Based Composite Application Deploy-
ment,” 12 IFIP/IEEE International Symposium on Integrated Net-
work Management, IM 2011.

VMware, “VMware Infrastructure Management Assistant (VIMA)
1.0 Release Notes”, Oct. 27, 2008, pp. 1-3.

VMware, “Virtual Disk API Programming Guide”, Apr. 11,2008, pp.
1-44.

Office action dated Jan. 23, 2013 for U.S. Appl. No. 13/036,588.
Casola et al., “Identity Federation in Cloud Computing,” 2010 Sixth
International Conference on Information Assurance and Security.
Yang etal., “A Profile-based Approach to Just-in-Time Scalability for
Cloud Applications,” IEEE International Conference on Cloud Com-
puting, 2009.

Prahalad et al., “Phoenix: System for Implementing Private and
Hybrid Cloud for OMIC Sciences Applications,” Seventh Interna-
tional Conference on Wireless and Optical Communications Net-
works (WOCN), 2010.

Foster “Globus-Toolkit,” The Grid: Blueprint for a new Computing
Infrastructure, 1st ed: Morgan Kaufmann Publishers, 1998.

Afghan et al., “GridAtlas—A Grid Application and Resource Con-
figuration Repository and Discovery Service,” IEEE International
Conference on Cluster Computing and Workshops, 2009.

Final Office Action dated Oct. 2, 2013 received for U.S. Appl. No.
13/036,588.

Non Final Office Action dated Nov. 10,2011, received for U.S. Appl.
No. 12/476,006.

Smith, B., et al., “IBM e-business technology, solution, and design
overview,” Aug. 2004, pp. 1-380. Student Edition.

Lutterkort, D., et al., “Manageable Virtual Appliances,” Linux Sym-
posium, Jun. 2007, pp. 1-12, vol. 1.

Krsul, I., et al, “VMPlants: Providing and Managing Virtual
Machine Execution Environments for Grid Computing,” Proceed-
ings of the ACM/IEEE SC2004 Conference on Supercomputing,
Nov. 2004, pp. 1-12.

US 9,280,335 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Hnetynka, P., “A Model-driven Environment for Component Deploy-
ment,” Proceedings of the Third ACIS Int’l Conference on Engineer-
ing Research, Management and Application, Aug. 11-13, 2005, pp.
1-8.

Hall, R., et al.,, “Evaluating Software Deployment Languages and
Schema—An Experience Report,” Knowledge Gate from IBM Mar-
ket Insights, Nov. 16-20, 1998, pp. 1-9.

Dearle, A., “Software Deployment , Past, Present and Future,” Future
of Software Engineering, May 23-25, 2007, pp. 1-16.

Hall, R., et al, A Cooperative Approach to Support Software Deploy-
ment Using the Software Dock, Proceedings of the International
Conference on Software Engineering, May 22, 1999, pp. 1-10.
Balasubramania, K., et al., “Model Driven Middleware: A New Para-
digm for Developing and Provisionaling Distributed Real-time and
Embedded Applications,” Nov. 14, 2003, pp. 1-28.

Kecskemeti, G., et al.,, “Automatic Service Deployment Using
Virtualisation,” 16th Euromicro Conference on Parallel, Distributed
and Network-Based Processing, Feb. 13-15, 2008, pp. 1-8.

Non Final Office Action dated Apr. 2, 2013, received for U.S. Appl.
No. 12/476,006.

Non Final Office Action dated Oct. 11, 2013, received for U.S. Appl.
No. 13/491,241.

Prahalad, H.A, et a., “Phoenix: system for Implementing Private and
Hybrid Cloud for OMIC Sciences Applications,” Seventh Interna-

tional Conference On Wireless And Optical Communications Net-
works (WOCN), Sep. 2010, pp. 1-5.

Peiris, M., et al., “Pro WCF Practical Microsoft SOA Implementa-
tion: APRESS,” Jan. 10, 2007, 512 pages.

Arnold, W., et al., “Pattern based SOA Deployment,” Sep. 17-20,
2007, pp. 1-12. vol. 4749.

Kodali, R., “What is service-oriented Architecture,” Javaworld, Jun.
13, 2005, pp. 1-4.

Parikh, A., etal., “SOA for the real world,” Javaworld, Nov. 29, 2006,
pp. 1-3.

Erl, T., “Introducing SOA Design Patterns,” Aug. 16, 2008, pp. 1-5.
Corneil D, et a., “An Efficient Algorithm for Graph Isomorphism,”
Journal of the Association for Computing Machinery, Jan. 1970, pp.
1-14, vol. 17, No. 1.

Ullmann, J., “An Algorithm for Subgraph Isomorphism,” Journal of
the Association for Computing Machinery, Jan. 1976, pp. 1-12, vol.
23, No. 1.

Tsai, W., et al., “Error-Correcting Isomorphisms of Attributed Rela-
tional Graphs for Pattern Analysis,” IEEE Transactions on Systems,
Man, and Cybernetics, Dec. 1979, pp. 1-12, vol. 9, No. 12.
Messmer, B., “Efficient Graph Matching Algorithms”, PhD Thesis
from the University of Bern, Nov. 24, 1995, pp. 1-161.

Eilam, T., et al., “Reducing the Complexity of Application Deploy-
ment in Large Data Centers,” Topology Management, May 2005, pp.
1-14.

* cited by examiner

US 9,280,335 B2

Sheet 1 of 38

Mar. 8, 2016

U.S. Patent

EINEN

INFANOHIANS
|~ NOLLYRO/NDISIA
FOVINI ONY F1ONNS

AOLISOd3Y
FOVM

“ orA)

OO0l

INFANOYIANT
a1ng

<0l

(SHYOMLIN

AYOLISOd3Y
F10NNg

WALSAS N &SN

901~

JOV4AINI
LEN

)

r
il

W3LSAS T 435N

12054

JOVRAINI
EN]

US 9,280,335 B2

Sheet 2 of 38

Mar. 8, 2016

U.S. Patent

F4NLdv/QY

INFANOHIANS
a1nd

ocl

< ol
AH0LIS0d3Y AJ0LIS0d3
FOVINI F1ONNG
4 /4
gl HSIMand HSIaNd oll
vy Qv
LY
FOVXIVd NOLLNO3X3 NN
A01d3d _! INFWNOYIANS
FAILOVHAINI
FOVIAI ONY F1ONNE
LId3/3N1430/ L40dNI Qﬂ ﬁ 1103/3N1430/ L4OdWI
]
% 140dX3 L140dX3 %
401¥340 J0VAI 4017340 F10NNG

140

c0¢

US 9,280,335 B2

Sheet 3 of 38

Mar. 8, 2016

U.S. Patent

ocl

INFWNOHIANS
aind

Ol

¢ old
mw%_\% NI | ruoLs0dy
_ VA | o
wa B ol _ / .
YOg — 2l
ounoze || T _\ -
1YY = NEVREY %| AHOLISOCH
NOLLNO313 710NN g Tane
\ i I
| 7 | 7
90% 20¢ oll
_ /dv 153 |
n
7
Al

US 9,280,335 B2

Sheet 4 of 38

Mar. 8, 2016

U.S. Patent

FOVIAI

FHYMLA0S

*10%

U

®©Lﬂ

YOy

4

4

SLOv4ILYY

V1VA-Y LN

F1ONNg

US 9,280,335 B2

Sheet 5 of 38

Mar. 8, 2016

U.S. Patent

NOILISOdIOJ ONY
35N-34 404 SF1ANNG
F18Y1IVAY NO ONI

G old
— T
9ll ~
80 F10NNg
T
SOV ~f——

it

1001

NOISId =
zog-1 1N

202]

US 9,280,335 B2

Sheet 6 of 38

Mar. 8, 2016

U.S. Patent

9 9l SITIYA NO SINIVELSNOD
ONY NOILY43d0 3L
0L SH3LINYHYd FAHOSA
(JWMLI0S ¥HLO NO STNAANIAIa
40 NIYINOO NOILND3X3 SY HANS)
SUNGIEINO3NOILYE0 S INFNHND3 NOLLYRAD HOHLNY
TIONYG MS Q350dM00 SYNIT NOILY9O0d QNY Q30T
- ” ~_0co (MS HIHLO NO STONINI]
M3N SY HSIand SALNGILLY ‘SONT HLOG 404 | 0w S3AL S0 Y Hons)
/ || STIVA ¥3HL NO SINIVILSNOD 0z9+"] SINIWTINDFY I4YMLA0S HOHLNY

V9 ST B SHLLINVAYY NOLLYSO [~729

(SHvevd 40 STV . NOLLYANBINOD H0/GNY NOILYTIYLSHI

AYOLYONYIN/ LTNY430 odo (213 NOLLYANDIANOD TdAL) Ll YYMLI0S ONILTISH FHL

19713 “89) TZIN0LSN) 1 SINOdONI NG HLOE Pezeg | 2H9 7| ONGIOSI THOOW JLINYAES YOHLNY
7 YIVAYLIN NI =] oNiAdINGQ) SLNIABMINO 210
259 olo)

(SNOILYNIGWOO (L40d LA (STIONNG NOILYIINAGO ¥0) STIONNG| | 1dIMOS NOLLYSNDINGO 0 | [SLOVAILYY qainda
TNLYIA TIONG NOLLYOING QY0 ONLLSIXT §3HLO OL (TYNOILAO | [NOLLYTIYLSNI ‘MS ONIgIOSID| | ¥3HLO /STMwNig
TIONNG) L0313 ; /Q34IND34) SAHSNOILYTY L3O VL ¥ L3N 4OHLNY /SLdI¥0S QY0TdN
P ot 7 I] NN

0%9 v19 919~ 0l

HSIand
1M (Mivd 140d TYNLAIA) T10NN
909~ @S0y va0 | ¥09~| nolvannmnoy v 3vap | 209~ TVE 1 ANV
I I f
%
14Y1S

US 9,280,335 B2

Sheet 7 of 38

Mar. 8, 2016

U.S. Patent

L Ol

YOL-]

SINFNRHINOTY

30/~ SLOVAILYY H

F1ONNg

I

I

7
cOL

OlL-]

S3ILMIEYdyO

SNOILYY3dO

4
0L

US 9,280,335 B2

Sheet 8 of 38

Mar. 8, 2016

U.S. Patent

S
olg <<]S0U>> m
f [
P3| eISUI-80-01=3eS e
[6=U0ISIaA !
353 Zgq=ouey @N@ i
_| RN [—— N —
I[BISUT 9BM1J0S | —
_ ZG=U0IS oA
\ / _ TIHy=uoINqLASIp
{IN9G¢, =aNen | xnurt=adf}
Klowsw =angLyje ! ETSAS SIeRIg
JaNAS=adA} L
_ UORUIS3Y AjIoBae) \ <<IS0y>>
f | =
g “ RSN “
" =U0ISJoN “
! Oleqlj=alieu !
| |
m. TTeTSU] 9/BMIJ03 .m
|||||||| ==
g

0%
el .
Xnurj=adAy “
B IEIIE) "
—_— ﬂl |||||||| -}
|
L
Cc@ugak> 1
! Y03
_
N . T N.J_
[[pa|[eisuI=alels |
“ “ (11 Z07}=uoissen “
“ “ S315=Uonnguasip !
! ! XnuIt=adA !
| | BISHS BUeR) |
_ b J
_. <<]S0U>> _.
| A |
“ =3Jels Lo =3jels
“ =U0ISJOA “ " =l0ISJ9A
! Yssuado=guieu o §|IIN-$ju=auleu
| | |
“ [ESYEEZES . [TeISUT 9/eM}J0S
e — R —— | e —_
5 N
olg 809

US 9,280,335 B2

Sheet 9 of 38

Mar. 8, 2016

U.S. Patent

a|duwex3 sdA] aneis

Xnuri=adA
URISAS urersd
<<]50U>>

QUIDS /gl /Ado/=Agesul
D3| e1SUI-3¢-0)=9)e]S
/6=U0IS BN
353 2gq-auey

(TTeTSU[SJBMIJ0S SPUaTXa)
WeIsAS ¢dd

o ol

8|dwex3 adA | oluweuAq

Xnuri=adA}
WRISAS SuTeisd)
<<]S0y>>

qljfbs/Ng|/ido/
=JI(]][BISUI <<papURIXE>>
Pa||ejsul-aq-0}=aje}s
[6=U0ISIBN
353 ¢80=oueu

[REUREIS

US 9,280,335 B2

Sheet 10 of 38

Mar. 8, 2016

U.S. Patent

xnuri=sdA
WRISAS sunessd)

<<]50U>>

Pa||e3sul-9q-0}=94€3s

TiSuUlgqp /aWou/=sWoy
=pJomssed

[1sulggp=oLuieu

JESRLUN]
<<UoneIngiuo)>>

<<SPURARP>>

Qllibs/Wgl/do /= fessur
pa|[elsul-aq-0)=a1els
/6=U0ISIBA
357 7gq-aueu

(TTeTSUT STeMH0S SPUaya)
WRISAS 74d

<<JS0y>>

Pajlejsul-aq-0}=03€ls

1000g=Hod
TSUlggp=aLueu

SIS 240
<<l0ljRIn3Ijuo)>>

US 9,280,335 B2

Sheet 11 of 38

Mar. 8, 2016

U.S. Patent

DY 3WPB3=32In0S

Y

<]

Ll "ol

Z3)'3597qp/dui /=135 48}
Z8y359g0pP/ L6,/MSpling/ /1y=a0.n0s

eIl

<C|

XMIH0=SUOISSILUIRd
100J=43UMO
dsrasagqp,/du /=1e3e}
dsIasazqp=92In0s

ORI

<C|

_L
I

F1ONNg

US 9,280,335 B2

Sheet 12 of 38

Mar. 8, 2016

U.S. Patent

28y 6S37qp,/du /=133 e}
731 /69S3Zqp=92In0S

ey

dsrasagqp,/du /=1e3e}
dsIasazqp=92In0s

cl old

FeiY

XMIH0=SUOISSILLIRd
100J=J0UMO

F1ONNg

\ ueo\s&&:m%@

qiitbs /g1 /Ado/=nQqIsuizcp
dun /=Alojosagaunion
p|INg-a3eWi=}yuns

Us'zgq(eisul /duw/=1e3 e}
US'zgqleisul=a2nos

FeiY

dsrasazap J- dmaszqp/ -
231'/69S3Zap JZX Je}

dsrassgap , /{Ti$=3114/,=3114., 1- Pas

100J=J43S1S\yun)
{plomssedrisuizapi$
[Iqisuizapi$ Uszgaileisul/dwi /=un)

_ UOTeRad() aInoexg 90| -

US 9,280,335 B2

Sheet 13 of 38

Mar. 8, 2016

U.S. Patent

XMIH0=SU0ISSIWIRd
100/=J3UMO
Us'zg(511u0d /Ui /sn /=1a3 e}
UsZg811u0)=a0In0s

FeJY

<l ol

_L
I

F1ONNg

L

qu;mmm%m___N@
=3UWLUISOHZap
duuy /=A10}0918UINIOM
31f1590edgEuU0|=3]A1 Js1oWe ed
fo|dap-agewi=]yun
100J=J381S\yuNi
Us'7g(131U00 /uiqs /sn /=uni

UoneJadQ 81ndexd [L07] \

US 9,280,335 B2

Sheet 14 of 38

Mar. 8, 2016

U.S. Patent

AJOLISOdR
F1ONNG

Yl Ol

90 s
< W m_._ozzmw w

anom

Olyl

dNd/LYAINd

WA
& e

N

AJOLISO3 L1355V
FOVI

(4IN9IS3Q) HOHLNY m_/mm< FOVI

YOrL]

1001 NIS3d
135SY
FOVI

I

.
()

US 9,280,335 B2

Sheet 15 of 38

Mar. 8, 2016

U.S. Patent

HSITdNd

7

31N%3
3LY1S F10A0 11
LYHM LY 301930

X301

SY3LINVAvd
F1NNG

40N

AINOD

7
clGl

olal

% wo@.\

F1Nd

133

EN

JOVIl
13

EN
EN

(s)

NDIS3d

US 9,280,335 B2

Sheet 16 of 38

Mar. 8, 2016

U.S. Patent

9l "9Ol4
SETE L
VIVAYLIN | BSILTIEYdY) FNLd¥I ¢
30 S ININEHIND3Y QL] / \ INYLSNI
V0N € TIVISNI T
TIONNg

US 9,280,335 B2

Sheet 17 of 38

Mar. 8, 2016

U.S. Patent

Ll Ol4
SY3LINvvd
VIVOVLIN | BSINGYdI /e R
FOVII SINFNRHINOY M / INNOW 2 \%27_;_
1
31¥adn € NI T
J10NNg

US 9,280,335 B2

Sheet 18 of 38

Mar. 8, 2016

U.S. Patent

1008 JONVLSNI
ISHANO AUMIIA G| [noiLyado

gl old

LIS ¥

31NN
/NI
SHILINYAYd
VIVGYLN | RSILMEYdY) JN1dYI ¢
I SINFNFHINOY 3OV / \ JONVLSNI
A
31¥adN ¢ INCIHIS T

F1ONNG

US 9,280,335 B2

Sheet 19 of 38

Mar. 8, 2016

U.S. Patent

ol ‘Old
1008
03I NOILY43d0
_ IdId €
MOJ ¥ TN
/NI
SHILINVEYd
SLOVAILHY AYREAO VIVAVIIN | R Sqevdy)
9V INOTD 0¥ NOTD SININRIND3Y
A
3UY0dN)
| SN
9 S3ILITIEvdvD
| S INIWIND3Y
TI0Ng “
Y1YQ-YLIN
MNOD T OVl 35V

US 9,280,335 B2

Sheet 20 of 38

Mar. 8, 2016

U.S. Patent

135SY IN/ ¢cO¢
/
— = 020¢

Oc¢ 2l
("o i TOIN B
!]
T300N TI00N SAHSNOLLY T34
LJvl19 : ADOTOAOL | [ABOTOAOL [==~1 B SALENLLY |~
A0z : DUNYIAS | | TvNOILONNS
. ¢
102
SINANAHINORY . 4,00
g0~ _SLvILYY ﬂ TIoNg U SNOILY3dO0
d obs
Z0v
S31LMIgYdY0
Ol

US 9,280,335 B2

Sheet 21 of 38

Mar. 8, 2016

U.S. Patent

—_—— e —

anJj=|enjdeoucd
Po|[elsul=s}e}s

=U0ISIIASO
Xnu=adAso
3HY=U0NNGLASIJSO
SOXTUITIHPSY
<<A)l[Igeden>>

2 ‘Ol

wajsAgsuessdp=adA)
Bunsoy=yul

EIEIIE

3UINSoH

9s|e)=|enjdaouod
Pa|eJSuI-80-0)=3jels

TUTERTRRAIS
<<IUM>>

go0r=xsip
SAUNSU0D

gor=F~owiswl
SalNSU0D

)

s

-

T'/'6=3ULISUOISIBA
/=loulw
p=J0lew

TgSEN

<<A}l[Iqeden>>

N

gI=sousijcnd
353 280 INgI=auejonposd

TPIRE]OS

<<A}lIqede)>>

~

U.S. Patent Mar. 8, 2016 Sheet 22 of 38 US 9,280,335 B2

<Ixml version="10" encoding="UTF-8'%>

<--xtools2_universal_type manager-->

<coreitopology
xmins:constraint="http://www.ibmcom/ccl/soa/deploy/core/constraint/10.0/"
xmins.core="http:/ /www.ibm.com/ccl/soa/deploy/core/1.0.0/"
xminsgenericsoftware="http://www.ibm.com/ccl/soa/ deploy/genericsoftware/10.0/"
xmins:os="http://www.lbm.com/ccl/soa/deploy/0s/10.0/"
xminsserver="http.//www.ibmcom/ccl/soa/deploy/server/1.0.0/"
name="Semantic">

<osunit.inuxOperatingSystemUnit name="0sUnit" conceptual="true"
goallnstallState="unknown" initinstallState="unknown">
<os:capability.redhatLinuxOperatingSystem displayName="Rechat AS4 Linux'
name="RedhatLinux" linkType="any" osdistribution="RHEL" os.type="Linux ">
<constraint:constraint.range name="version" attributeName="osVersion"
maxValue=""minValue="54"/>
</os:capability.redhatLinuxOperatingSystem>
<os.capability.unixDirectory displayName="directory" name="directory"
linkType="any" FixedPath="/tmp’>
<coreattributeMetaData attributeName='FixedPath" mutable="false' />
</os:capability.unixDirectory>
<corerequirement displayName="Server" mutable="true" name="Server
dmoType="server:Server" linkType="hosting">
<constraint:constraint.equals name="cpuArchitecture’
attributeName= cpuArchitecture” value="intel"/>
</corerequirement>
<corellinkhosting name="HostedSoftware" source="/OsUnit" target="/DB2Unit" />
</osunitlinuxOperatingSystemUnit>

FIG. 22

US 9,280,335 B2

Sheet 23 of 38

Mar. 8, 2016

U.S. Patent

<

<

—

AT
N UOISIBASO

~

—

L T
LT

N~

—

Y\ <<Ayljiqeden>>

YA\ <<A}ljiqeden>>

anj=[enjdaouod
Po|fe3sul=ayels

et

=U0ISIBASO \

xnui=ad£ | so
SF15=UonngLasidso

SOITSaIS

Ve

(0
onez)

anJi=[enidsouod
Po|[eisu=aje}s

—_———— .- —

/

)

eoy

=UOISIBASO \

Xnur=adA S0
THE=uoRNqUASIdso
SOXMUIEHPaY

e

—_————— —

/

/

_

F

\

~

ahi)=|endaoliod
Po[Elsui=a]els

Xnur=adA 1 so /,

SOy

7

/

Wia)sASBuIieladp=adA)
Bunsouy=xul|

UENENTEN

35|e)={enydaouod
pa||eIsul-a¢-0)=3}e1s

Sunsoy TUETURRN0S

<<JUn>>

go0r=e1p
$3UUNSL0D

gor=Alowsu
$aLLNSL0d

\

-

[/6=3ULASUOIS oA

<<A)lIgede)>>

N 4

/=louiu
g=loewl

IIETY

/ -

N

gI=Jeustignd
353 240 WdI=aueNjonpoud
TETSTRRI[OS

<<A}l|Iqeden>>

/

US 9,280,335 B2

Sheet 24 of 38

Mar. 8, 2016

U.S. Patent

¢ Old

(SIWV¥Yd) NOILYH3dO

LOv4I LYY

(SWvYvd) NOILY¥3dO

LOVAI LYY

140d

L140d

ASVL

LOVAI LYY

LoV LYY

W3LSAS TWNLYIA

US 9,280,335 B2

Sheet 25 of 38

Mar. 8, 2016

U.S. Patent

28)'7qp/duy /=Uoljea0Taewl
Z3)'gqp=UorjedoTiasse
1oy

dsreqp/duwy /=UoreaoTedew
dsrzap=UoneaoTssse
1efHY

Ge¢ 2ld

uojessdQ=adA
SIaqUiBW=yUI|
TURUIBTDoY
!
95|eJ=[endaoucd
Pa|[eIsUI-8G-0}=0]e1s

Uszgqlfelsul /dus/=uorjeaoTedew
Us'zgq|[eisul=UoljeaoTiasse
I

uoljesadQ=adfy
SIaqUIBW=U|
TURWRATD3Y

1

Jiupuone.adouny
<<Jlup>>

}

JENIET

r

Us'zgqi[eisul /dui /=spuewiionun
Ysed=Jajadia|
plIng-agewl=}yuni
Us7gq |[elsuy, =alieuorelado
TG
<<A}|Iceden>>

95[eJ=lprdaauod
paje1sul-ag-0]=aes

Jundnojsuonessdp)
<<JUN>>

!

||e3sU=aweNdnoi3
anomuoTeRaQ
<<All|Igede)>>

S JaQUUBLU=YUI|
JUENEY R

i

JAqUIaN

as|el=[endaquod
Pal[elsui-60-0}=ae1s

T WRISASTENHIA
<>

i

=3LLBNWB)SAS
WRISASIENMIA
<<All|iqeden>>

U.S. Patent Mar. 8, 2016 Sheet 26 of 38 US 9,280,335 B2

<?xml version="10" encoding="UTF-8"?>

<--xtools?_universal_type_manager-->

<coretopology xmins:xsi="http://www.w3org/ 2001/ XMLSchema-instance"
xmins:appliance="http://www.ibmcom/ccl/soa/deploy/ virtualization/appliance/1.0.0/"
xmins:core="http://www.ibm.com/ccl/soa/deploy/core/10.0/" \
xmins:operationDeploy='http://www.ibm.com/ccl/soa/deploy/operation/1.0.0/"
xminsxsd="http:/ /www.w30rg/2001/ XMLSchema" name='Automation">

<applianceunitvirtual System name="virtualSystemun>
<appliance:artifactimageFile name="imageFileArtifa"
deployLocation="/opt/IBM/AE/AS/ConfigDB2:sh" executable="true">
<core:fileURI>ConfigDB2.sh</corefileUR>
</appliance:artifactimagefile>
<appliance:artifactimageFile name="ial" deployLocation="/tmp/dbZese_tlic">
<corefileURI>db2ese_tlic</corefilelRI>
</appliance:artifactimageFile>
<appliance:capability.virtualSystem name="virtualSystem'/>
<corerequirement name="members" dmoType="coreCapability"
linkType="member" use="optional"/>
<core:linkmember name="iop" source="/virtualSystemUn"
target='/instal DB2ESE97Group' />
</applianceunit virtualSystem>

<appliancexunit.operationGroup name="installDB2ESE97Group">
<appliance:capability.operationGroup name="instalDB2ESES7"
groupNames="Install DBZ ESE 9.7.1'/>
<corerrequirement name="memberQOperations" dmoType="operationDeploy:Operation"
linkType="member"/>
<core:linkmember name="iop" source="/installDB2ESEY/Group’
target='/instal DB2ESE97'/>
</applianceunit.operationGroup>

FIG. 20

US 9,280,335 B2

Sheet 27 of 38

Mar. 8, 2016

U.S. Patent

("NOILJIHOSIT JNWN) S31L43d0Nd L3SSY
SINAINGD

Q0L

(NILX3 OL FO¥II ONILSIXT LOFTIS

SNOILINIJ3Q L4vd
SIOVII 51
300 D14193dS YoM YNADIE
THA0N TYNOILON 9%eLe
T00N OILNYAES £
SILEdONd 1SV ¢¢/z] 140dX3 J14193dS 1394V 1L OVl SLH0dX3 43SN
TAD QS O mmxm.:ma 439N
e
| SINIINOD Gl YeLZ .
(IRASNYEL/CRNLAYO S50 [oo >
}
ST _ e DAL mmmzs 435N
JIONAS [+ —
TI00W 3L¥0dN
310933 (S)39¥X0¥d NOLLN3X3 QILYAIND (S13DYHIYd NOLLNOIK |~ bz
_ [} \ olLe /
O RS £ (3LHYLS FZINOHHONAS JZINOBHONAS SLOTTIS 435N
ONAS 40° L0 }
a1z " 21z (10N 135Sy 39 v 300N LI03 SLIX3/SINVS 438N —
oIz I
300 Y510 0L SI0NA314d gOLz 1 NOUNHHO B SLIGI 8N (= Hu_m__wm_wm/
TIA0N MY AIONAS I
TIO0N TNOLLOND _ WA
1355Y 3971 3Lv340 435N WOMA LNl LO3TI09 STYLIQ TYNINIA
TAQON DIINVAZS Va :
135SV TYNIOIMO WO ¥ LYQY 13W 40 31400 / vOLS |

2012

US 9,280,335 B2

Sheet 28 of 38

Mar. 8, 2016

U.S. Patent

LegC

S8 =

WYY Ai_%odao

ano12 3LNdWOI

| g7 Old
ovgz JNLdYD Q3N LdvD
Z5g7 avaz PV STHSEANd H3SN
\ I
@LNIIXT (SIIOWHIV NOILNGIXT =— AILYHINID (SIIDWYOYd NOILND3X3
y T ﬁ PYAI STHNLdYD 435N
rraz ovge NI S !
TINAS
538 v2Qz
= Jnons—— | $TI00N 31¥0dN e
0D a0 | {033 (5139v¥0vd NOLLN3X3 [=—] GALVEANID (SI39¥H0Vd NOINO3E -2 gz
_ N — f 9292 ww%
Q3A0d30 39VWI 3Svd 0T QALHYLS IZINOHHONAS JZINOMHONAS SLOTTAS ¥3sn
ommN A S IV Das 40”10y J
gege 31vddn 135SV 1OV JA0W 1103 S1IX3/SIAYS 439N
7 I
2222 O™ T\0ILNE30 0Vl SLIC3 BN
TNAS _ } N
3132

olge

1359 30T 130871 3Lv30 |=— A

Q3ONAS }

L355Y 30V 3578 3LY340 N ! SN
y 2192 ol8e
bz Q097 1RO A8, QNALX3 OL JDWAI ONILSIX3 LOTTaY
T
009z | NMOLISOZI Al NOOI 411N/ AILNA
)
YOGz 1NED Y10 LT 13S
I
2097 dn 135 LNINONANE

¢0d34 NOOI
NI SLSIX3 L3SSY 30Nl

435 WY LNdNI LOATI00

U.S. Patent Mar. 8, 2016 Sheet 29 of 38

(ENTER)

\

OF A SET OF SOFTWARE MODULE

\

US 9,280,335 B2

GENERATE A SEMANTIC REPRESENTATION | ~2902

GENERATE A FUNCTIONAL REPRESENTATION OF A SET OF
OPERATIONS TO BE PERFORMED ON THE SET OF SOFTWARE
MODULES DURING A SET OF VIRTUAL IMAGE LIFE CYCLE STAGES

|~ 2904

v
GENERATE A SET OF ARTIFACTS COMPRISING

ASSOCIATED WITH THE SET OF OPERATIONS

\

A SET OF EXECUTABLE INSTRUCTIONS ~ |~2906©

STORE THE SEMANTIC REPRESENTATION, THE
FUNCTIONAL REPRESENTATION, AND THE SET
OF ARTIFACTS, IN A COMPOSABLE SOFTWARE BUNDLE

| ~2206

o)
FIG. 29

U.S. Patent Mar. 8, 2016 Sheet 30 of 38 US 9,280,335 B2

(ENTER)

ASSOCIATE AT LEAST ONE COMPOSABLE SOFTWARE |~ 2002
BUNDLE WITH A VIRTUAL IMAGE

3006
NOTIFY THE USER | COMPATIBLE WITH THE
IMAGE?
DISPLAY
COMPATIBLE 2010 5012
BUNDLES DOES THE BUNDLE ,
5 OR THE IMAGE REQUIRE NOTIFY THE USER
5008 ADDITIONAL BUNDLES
NO DISPLAY THE
REQURED
BUNDLES
DETERMINE FOR EACH OPERATION IN THE BUNDLE N

AND IMAGE A VIRTUAL IVAGE LFE-CYCLE PRASE THT .05 3014
EACH QPERATION IS TO BE EXECUTED IN

CREATE A NEW VIRTUAL IMAGE BASED ON THE BUNDLE |~ 2016
AND THE VIRTUAL IMAGE

FIG. 20

US 9,280,335 B2

Sheet 31 of 38

Mar. 8, 2016

U.S. Patent

(NOILYAILOY) 1004
g Nf_m QYRHL 9IN0D 2 40 [Moz
) (153 (NOILYAILOY)
& "Old 1353 SYM € d0 INOOLINTd0 [Ny
T3OW TYNOILONNS
veig—= olle
11531
(SIMSIQ TYNLYIA N:fn | 11§36 | Pw_m
P [% | | sym |
ogle TH0W DNV
7 N
Toife L35SV FOVAI AN AN
zele
Z0\¢
N
ollg (NOILYAILOY)
\ HET iNooLaN T o
9ZIg— e olc ngo_\,_ TYNOILONN
| 1WSvM €0 | vele 12lg —-=¥od T
2 — spisia W OV | 1855 |
[100d QvRHL 9IIN0D 2d0]| | TIVLSNISvM 1d0] | SvM |
9z18— THIOW TNOILONNA T3Q0W DILNVIWES clile
> N, J THOON OLNVHES |

TI0NNg S W

X e

AL gl

L135SY JOYNI 358
”@Q A%

US 9,280,335 B2

Sheet 32 of 38

Mar. 8, 2016

U.S. Patent

1474%

NFNm

<% Ol

QFNm QQNM

®©Nm %Qmm

NQNm

. A 3LYALLOY

/14V1S

e

mzo_zmm_% Ammov
F10A0 3N F1ONNG
F491IN0D INEIEN

w<_>__
35vd
INEREN

<
JWILINNY 004,

J\
QI__Dm :OO&:

<
NOIS3a 004,

US 9,280,335 B2

Sheet 33 of 38

Mar. 8, 2016

U.S. Patent

@& ‘old
momm THION 852 TNOLLONN @Qfmm THOOW 850 DILNVIES
<&

. IWNISOHON) L | _
LSNP L AN “
vs,z: <<[H0dNI>> |
l— — — — — |
| | |
“) Crwsmmnsn | | 2ee | i
NOLLYTIVLSNI 34YA L40S NOILY43d0 A0Td30 NOLLIC3 OSINEAAH Y36 NOLLYOMIddy JBHSeEm | | 1
! WLSAS 35¥8 /007 JHHSTIM i
m |
B - |
<V <INV R>
+ oeee | + \m

I elioe
¢omﬁ TIOON 39V TYNOLLONN i Nofmm TIO0N 39V DILNYWIS |
I |
| ~ |
@vmm i ® anes o8 !
< I YINMIS 99X !
<INNLSOH ON> ! T i
IRELD << H0d>> “ CAWNISHON e |

= i AR “ 1 531
1INBUU0) olkele h I
NOILYA340 NOLLYAILOY = _ - _
[00TTOT'S T4 '9 ONIHO LINOI TTOAIL I
NOLLYTIVLSNI IYMLI0S NOLLYTTVLSNI J4YMLI0S

US 9,280,335 B2

Sheet 34 of 38

Mar. 8, 2016

U.S. Patent

& Ol
moﬂq “ THO0N 800 TYNOLLONN @Qﬂq © TI00W 80 D1INVIES
{®>
<&
Am_\,é%wx o> T amSOH O | -
YN i
(0> _ < _ “
L3NBIu0) L SYMBIUO)] i
N30 NOILYALOY NOILY43d0 NOILYAILOY i
| [X) |
. T A I
! NOLLY43d0 dnh3 10 m m
“ _ I
YIrg—1 A2 e “
TVR> <37V IP>
| <> + _ + \m
|
I I cOve Olre~")
| T —— Xwﬁ _ O TOON OILNYIES 39V "
i | = !
| | (4INY3S 98X) i
| <) > X
| <INYNLSOH O | NS 8 i
_ 1S
| = | CamsHON | |
]] ! 17 5975
1INB1) sy VSN ! _ _
|
NOLLYEd0 NOILYALLOY NOILY¥3d0 AOTd3C ™ orrors v S ——
|| NOLLYTIYLSNI 3H7ML10S NOLLYTIYLSNI T4VAL0S
|
<
L INOLLICZ HOSIAMEAAH YEANES NOLLYOMAdY EHASEIM
WLSAS 35¥8 Z007 JHISTIM

US 9,280,335 B2

Sheet 35 of 38

Mar. 8, 2016

U.S. Patent

O TI00W JOYIAI TYNOILINNS

<®>

<INYNLSCOH ON>
IREIN

]

1INB0)
NOILYH3dO NOILYAILOY

[<®>

£ \H SYM TIVLISNI
0L NOILY¥3d0
JINONH

P

® gymBo
NOILYE30 NOLLWAILOY

<®>

Symdnuealy
NOILYH3dO dINVAT)

Y0Sg
A

T300W 3OYIAI TYNOILONNS

N
209¢

<INYNLSCH ON>
IR

<&

L)

1INB0)
NOILYY3d0 NOILYAILIY

Vm|>_._|w<>> TIVLSNI
NOILYY3d0 AQTd3d

P

® ymao
NOLLY0 NOILYAILOY

{&>

Symdnuealy

NOILY¥3d0 dNVH1D

4% ol

T3A0N 30V D1LINYI3S

<>

(43NS 98X)
Y43AY3S 98X

)

<&

<INYNLSOH ON>

EIVAN

<®>

LOOTTOTS TH3d
NOLLYTIV.LSNI J4¥ML40S

<®>

1'9 ONISOLINOW ITOAIL Wl

NOLLYTTVLSNI 34¥MLA0S

TIVISNI

(31Yadn

{]<®>

1103 HOSIANIAAH YEAYIS NOILYOIddY JeTHASEIM

olge”’

IN3LSAS 35v8 £007 F4FHSEIM

4

904%

TIA0N 3OV DLINYI3S

<04%

<>

(4343 984)
%>$+m 98X

<JNYNLSOH ON>
IR

<®>

<®>

£O0TTOTS TH3d
NOILYTIV.LSNI J4¥ML40S

|
<®>

['9 ONISOLINOW TTOAIL Wl
NOLLYTTVLSNI 4¥ML40S

<0

NOILIQT HOSIAYIdAH 43NS NOILYOINddY FHFHdSEIM
INFLSAS 35v8 Z007 FFHSHIM

US 9,280,335 B2

Sheet 36 of 38

Mar. 8, 2016

U.S. Patent

O¢ Ol4
(S)301A30
TYNELX3
Y
029¢
LAY MOMLIN amo%mz_ AYISI0
/
Y29¢ 229¢
-
Ol |+ 2l9g g09%
\ __ Zl9¢
INFANOMIANT N-olo¢ / LINN
NOILYZHO/NDISTa ETOA ONISSTO0N
991 9 TIaNNg NLLSAS &%
IYI0LS o
\
riog AYOWIN 0l9¢
/
209% WINAS/NILSAS d3INdD |~ 209%

US 9,280,335 B2

Sheet 37 of 38

Mar. 8, 2016

U.S. Patent

/S Ol
ﬁmﬁr 500

90L%

OQ@M

§
\
LN L) \ FARY
[N 1 / \
__ \ _. ~~ ,. /
] [1\ SV
/o _ NN S
0L i ! N e N
__ _ \ ._) e
P
| /__ -
I \Jf
i //l
_

¢ olLE 20/C

US 9,280,335 B2

Sheet 38 of 38

Mar. 8, 2016

U.S. Patent

gL Ol

209¢
/

91eM1J0S PUB 3IEMPIEH

91eM10g
JEIYEN SWRISAS I3RS

3lemijos uojeaddy @ES%_W,_M_m @mm_amx 3INBYANY
asegeieq wiomjey dunomjay aBeiolS @ @_\,_m_ Q1Y Saleduiey
r08%

U O B (s . - g

Sual) suonealddy Syomp a3eI0)S sionpg OHBZIBHIA
A e e el enlA
/

= | (N o
Juswiadeuep

#MQE_E_E pue JusWadeuey 2110 Jas 8UIdlid pue uILoIsIn0Ig
UILUeld /1S 9797 90IAJBS 3uBIel 30N0SaY Q09¢

/
SPEOMIOM

SWRIsAg

— \

uoieal) fianpg %%%%_mw%_\,_
B UIsaq SUISS3904 SU1SS8004d 1ojeanp3 _% W1 /7 wonesiney
agew| uonoesues | So1Ajeuy eleg L00JSSe) Eweao_w\ao pue 3uiddepy

3 ajpung [enIA SBINI0S

US 9,280,335 B2

1
SEMANTICALLY RICH COMPOSABLE
SOFTWARE IMAGE BUNDLES

BACKGROUND

The present invention generally relates to computing sys-
tem virtualization technologies, and more particularly relates
to using semantically rich composable software bundles to
design and build virtual image assets.

Compute clouds such as Amazon EC2, and virtualization
technologies, such as VM WARE are increasing in popularity.
However, software providers, solution providers, and end
users are facing challenges in packaging software and solu-
tions as virtual image assets, either for in house use, private
clouds, or public clouds. Some of the challenges in building
virtual image assets are not new. These challenges include
well-known installation challenges such as installation fragil-
ity, version compatibility problems, and satisfying software
dependencies. Some other challenges are specific to the area
of virtualization and cloud technologies. They include the
need to not only install software, but to also configure an
activation mechanism that personalizes the software per each
image asset deployment. This step is sometimes necessary for
the software to be functional (e.g., changing the host name
configuration), and other times is necessary to make it more
useful for sharing across different users. In addition, image
asset builders must deal with multiple different virtualization
platforms and technology (VMWARE, XEN, AMIs), and
multiple different mechanisms, APIs, processes, and meta
data per each target cloud. Also, packaging a solution includ-
ing multiple software components on a set of virtual image
assets is challenging since software on different virtual image
assets must be cross-configured (implying ordering of script
execution at deployment and parameter value dependencies).

BRIEF SUMMARY

In one embodiment, a method for creating a composable
software bundle. The method comprises retrieving a semantic
representation of a set of software modules. A functional
representation of a set of operations is retrieved. Each opera-
tion in the set of operations is to be performed on the set of
software modules during at least one virtual image life-cycle
phase in a set of virtual image life-cycle phases. A set of
artifacts comprising at least one of a set of metadata and a set
of executable instructions associated with the set of opera-
tions is identified. The semantic representation, the functional
representation, and the set of artifacts, are stored in a com-
posable software bundle.

In another embodiment, a computer readable storage
medium for creating a composable software bundle is dis-
closed. The computer readable storage medium comprises at
least one data structure comprising a composable software
bundle. The composable software bundle comprises a seman-
tic representation of a set of software modules. The compos-
able software bundle also comprises a functional representa-
tion of a set of operations. Each operation in the set of
operations is to be performed on the set of software modules
during at least one virtual image life-cycle phase in a set of
virtual image life-cycle phases. A set of artifacts or references
is also included within the composable software bundle. The
set of artifacts comprises at least one of a set of metadata and
a set of executable instructions associated with the set of
operations.

In yet another embodiment, a system for creating a com-
posable software bundle is disclosed. The system comprises a
memory and a processor communicatively coupled with the

20

25

35

40

45

2

memory. A user interface, communicatively coupled with the
processor and the memory, is for displaying information to a
user and for receiving user input from the user. The processor
is adapted to perform a method. The method comprises
retrieving a semantic representation of a set of software mod-
ules. A functional representation of a set of operations is
retrieved. Each operation in the set of operations is to be
performed on the set of software modules during at least one
virtual image life-cycle phase in a set of virtual image life-
cycle phases. A set of artifacts comprising at least one of a set
of metadata and a set of executable instructions associated
with the set of operations is identified. The semantic repre-
sentation, the functional representation, and the set of arti-
facts, are stored in a composable software bundle.

In another embodiment, a computer program product for
creating a composable software bundle is disclosed. The
computer program product comprises a storage medium read-
able by a processing circuit and storing instructions for execu-
tion by the processing circuit for performing a method. The
method comprises retrieving a semantic representation of a
set of software modules. A functional representation of a set
of operations is retrieved. Each operation in the set of opera-
tions is to be performed on the set of software modules during
at least one virtual image life-cycle phase in a set of virtual
image life-cycle phases. A set of artifacts comprising at least
one of a set of metadata and a set of executable instructions
associated with the set of operations is identified. The seman-
tic representation, the functional representation, and the set of
artifacts, are stored in a composable software bundle.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The accompanying figures where like reference numerals
refer to identical or functionally similar elements throughout
the separate views, and which together with the detailed
description below are incorporated in and form part of the
specification, serve to further illustrate various embodiments
and to explain various principles and advantages all in accor-
dance with the present invention, in which:

FIG. 1 is a block diagram illustrating one example of an
operating environment according to one embodiment of the
present invention;

FIG. 2 is block diagram illustrating another view of the
operating environment of FIG. 1 according to one embodi-
ment of the present invention;

FIG. 3 is a block diagram illustrating a more detailed view
of an interactive environment for designing/creating compos-
able software bundle and virtual image assets based thereon
according to one embodiment of the present invention;

FIG. 4 shows a high level example of logically adding a
bundle to a virtual image asset according to one embodiment
of the present invention;

FIG. 5 shows a high level overview of a bundle design
process according to one embodiment of the present inven-
tion;

FIG. 6 shows a more detailed operational flow diagram for
a bundle design process according to one embodiment of the
present invention;

FIG. 7 shows a logical bundle structure according to one
embodiment of the present invention;

FIG. 8 shows one example of logical bundle requirements
according to one embodiment of the present invention;

FIG. 9 shows one example of logical bundle capabilities
according to one embodiment of the present invention;

US 9,280,335 B2

3

FIG. 10 shows one example of logical bundle installation
and configuration capabilities according to one embodiment
of the present invention;

FIG. 11 shows one example of logical bundle artifact meta-
data according to one embodiment of the present invention;

FIG. 12 shows one example of logical DB2 installation
bundle according to one embodiment of the present inven-
tion;

FIG. 13 shows one example of logical DB2 configuration
bundle according to one embodiment of the present inven-
tion;

FIG. 14 shows a high level overview of a virtual image
asset creation process according to one embodiment of the
present invention;

FIG. 15 shows a more detailed operational flow for a virtual
image asset design process according to one embodiment of
the present invention;

FIG. 16 shows one example of an instance, deploy, install
and capture process to create a virtual image asset according
to one embodiment of the present invention;

FIG. 17 shows one example of an off-line install process to
create a virtual image asset according to one embodiment of
the present invention;

FIG. 18 shows one example of a schedule and execute on
boot (activate) process according to one embodiment of the
present invention;

FIG. 19 shows one example of a deploy per instance pro-
cess according to one embodiment of the present invention;

FIG. 20 shows one example of mapping a logical bundle to
an asset according to one embodiment of the present inven-
tion;

FIG. 21 shows one example of a semantic model for a
bundle asset for installing the IBM DB2 Enterprise Server
Edition (ESE) v9.7 according to one embodiment of the
present invention;

FIG. 22 shows an XML representation of the model shown
in FIG. 21 according to one example of the present invention;

FIG. 23 shows complex structured requirements for the
DB2 bundle for installation can be specified in either SLES or
RHEL according to one embodiment of the present invention;

FIG. 24 shows a logical representation of a functional
model structure according to one embodiment of the present
invention;

FIG. 25 shows one example of a functional model for the
bundle to install DB2 ESE 9.7 according to one embodiment
of the present invention;

FIG. 26 shows one example of a serialized representation
of'a functional model for installing DB2 ESE 9.7.1 according
to one embodiment of the present invention;

FIG. 27 shows an overall operational flow diagram for
extending a virtual image asset in a local build environment
according to one embodiment of the present invention;

FIG. 28 shows an overall operational flow diagram for
extending virtual image asset in a cloud computing environ-
ment according to one embodiment of the present invention;

FIG. 29 is an operational flow diagram illustrating one
example of creating a composable software bundle according
to one embodiment of the present invention;

FIG. 30 is an operational flow diagram illustrating one
example of creating a virtual image asset using composable
software bundles according to one embodiment of the present
invention;

FIG. 31 is a functional diagram illustrating one example of
creating a new virtual image asset from a composable soft-
ware bundle and a base virtual each comprising semantic and
functional models according to one embodiment of the
present invention;

20

35

40

45

4

FIG. 32 is a functional diagram illustrating one example
virtual image asset extension process according to one
embodiment of the present invention;

FIGS. 33-35 illustrate one example where two composable
software bundles are added to an image asset according to one
embodiment of the present invention;

FIG. 36 illustrates one example of a cloud computing node
according to one embodiment of the present invention;

FIG. 37 illustrates one example of a cloud computing envi-
ronment according to one example of the present invention;
and

FIG. 38 illustrates abstraction model layers according to
one example of the present invention.

DETAILED DESCRIPTION
Operating Environment

FIG. 1 shows one example of an operating environment
100 applicable to various embodiments of the present inven-
tion. It should be noted that the operating environment 100
can be a cloud computing environment or a non-cloud com-
puting environment. In particular, FIG. 1 shows one or more
networks 102 that, in one embodiment, can include wide area
networks, local area networks, wireless networks, and/or the
like. In one embodiment, the environment 100 includes a
plurality of information processing systems 104, 106, 108
that are communicatively coupled to the network(s) 102. The
information processing systems 104, 106, 108 include one or
more user systems 104, 106 and one or more servers 108. The
user systems 104, 106 can include, for example, information
processing systems such as desktop computers, laptop com-
puters, wireless devices such as mobile phones, personal
digital assistants, and the like.

The server system 108, for example, includes a compos-
able software bundle asset and virtual image asset design/
creation environment 110 herein referred to as the “interac-
tive environment 110”. Users of the user systems 104, 106
interact with the interactive environment 110 via a user inter-
face 112, 114 or programmatically via an AP1. The bundle and
image interactive environment 110, in one embodiment, com-
prises a tool that includes at least one of an application(s), a
website, a web application, a mashup, or the like, that is used
to define and publish composable software bundle assets and
also image assets. In other words, the interactive environment
110 allows composable software bundle assets to be created
and managed and also allows new virtual image assets (image
assets) to be created from these bundle assets. As part of this
process execution packages are generated and executed to
extend an image with a number of software bundles.

A composable software bundle (also referred to herein as a
“bundle”, “software bundle”, “software bundle asset”,
“bundle asset”, or other similar variations, which are used
interchangeably) is a cloud independent description of soft-
ware that captures those aspects needed to install and config-
ure it in a virtual machine. This description allows the bundle
to be used to support image asset construction for multiple
target cloud platforms. The metadata for each bundle
describes one or more of: (1) the software’s requirements and
capabilities to ensure valid composition; (2) the install steps
that need to be executed and their parameters as part of a
virtual image build life-cycle phase; (3) the deploy time con-
figuration steps that need to be executed and their parameters
as part of a virtual image deploy life-cycle phase (4) the
deploy time configurations that can be made with external
software via virtual port definitions; and (5) the capture time
cleanup steps that need to be executed and their parameters as

US 9,280,335 B2

5

part of a virtual image capture life-cycle phase. The metadata
can comprise references to specific artifacts: scripts, binaries,
response files, etc. These can be local references (the artifacts
are contained in the bundle) or remote references (to a remote
repository). It should be noted that other virtual image life-
cycle phases such as, but not limited to, a start phase can be
supported as well. The bundle is discussed in greater detail
below.

With respect to virtual image assets (also referred to herein
as a “image”, “virtual image”, “image asset”, or other similar
variations, which are used interchangeably), the interactive
environment 110, uses a platform independent image descrip-
tion model that can be used to describe an image asset’s: (1)
contents and capabilities; (2) hardware requirements includ-
ing hypervisor requirements; (3) deployment time configura-
tion steps that are to be executed and their parameters; and (4)
capture time cleanup steps that must be executed and their
parameters. As with composable software bundles, an image
asset comprises both the image description and any required
disk images, scripts, binaries, etc., either directly or by refer-
ence, needed to deploy the image asset.

FIG. 1 also shows that a bundle repository 116 and an
image asset repository 118 are communicatively coupled to
the server 108 via the network(s) 102. These repositories 116,
118 persist reusable bundle and image assets respectively, and
will be discussed in greater detail below. It should be noted
that even though FIG. 1 shows the bundle repository 116 and
an image asset repository 118 residing outside of the server
108 these repositories 116, 118 can reside within the server
108 and/or in the same location as well. It should be noted that
the image asset bundle repository 118 can be the same or
different than the bundle repository 116.

A build environment 120 is also communicatively coupled
to the network(s) 102 that provides the interactive environ-
ment 110 with virtual machines with which it can build virtual
image asset assets. The build environment 120, in one
embodiment, can also comprise the image asset repository
118. The build environment 120 is discussed in greater detail
below. It should be noted that there can be multiple bundle
and image asset repositories 116, 118 and multiple build
environments 120.

The interactive environment 110 addresses the needs of
both software vendors and consumers by providing a system
that allows vendors to focus on providing software as soft-
ware bundles and allows consumers to easily compose these
bundles with base virtual image assets to create custom vir-
tual image assets satisfying their requirements. Software
bundles comprise the necessary function to install software
and configure it at image deployment together with metadata
describing it in a target cloud independent way. At composi-
tion time, the interactive environment 110 uses this informa-
tion in an image specific way.

One advantage of the interactive environment 110 is that it
is separate from target cloud details. In other words, the
interactive environment 110 provides a standard way for soft-
ware to be described in a target cloud independent way that
enables the software to be installed and configured in multiple
target clouds platforms. Another advantage is that the inter-
active environment 110 supports different software installa-
tion and configuration infrastructures. A further advantage is
with respect to the composition of software to images. For
example, the interactive environment 110 provides tooling
and a system to flexibly compose software on a base image
asset. This tooling supports base virtual image assets with
different operating systems on different system architectures
and targeting different cloud platforms. These platforms are
able to support different deployment time configuration tool-

10

15

20

25

30

35

40

45

50

55

60

65

6

ing. Yet another advantage is that the interactive environment
110 supports cross configuration of multiple image asset. For
example, the interactive environment 110 provides a standard
way to describe image asset enabling them to be composed
into multi-image solutions where valid compositions can be
identified and in which deployment time ordering and param-
eter passing between image asset is supported.

The interactive environment 110 addresses the problems
faced by both software vendors and consumers by providing
a system that allows software vendors to create cloud inde-
pendent software bundles and image asset creators to more
easily define and build image asset for a particular cloud
platform by the vertical composition of those software
bundles. A standard cloud independent description language
for bundles allows software vendors to focus on creating
bundles that address the fundamental installation and con-
figuration issues that arise in a virtual machine setting inde-
pendent of the eventual target environments. Once an image
asset creator has identified the software bundles to be added,
the interactive environment 110 generates reusable target
cloud specific execution bundles that can be used to install
and configure the software on a virtual machine.

FIG. 2 shows another view of the operating environment
100. As can be seen from FIG. 2, one user 202 at a user system
104 can be a bundle creator and another user 204 at another
user system 106 can be an image asset creator. A bundle
creator uses the interactive environment 110 to define and
publish composable software bundles. A composable soft-
ware bundle describes software in a target cloud independent
way. A composable software bundle identifies the require-
ments and capabilities of the software and describes the
operations required to install the software, configure it at
image asset deployment time, and to cleanup at image asset
capture time. These operation descriptions identify the spe-
cific artifacts (e.g., files such as, but not limited to, scripts,
binaries, response files, etc.) needed and the parameters for
their operation. Finally, the bundle may describe the ways in
which it can be horizontally composed with other software. A
bundle description can be specific to a particular operating
system or architecture (expressed using the bundle require-
ments), but is independent of target environment. Bundle
creators can then publish bundles as reusable assets to a
bundle repository 116 or can export them for redistribution, as
shown in FIG. 2. It should be noted that, in one embodiment,
a bundle can be created manually as well without the inter-
active environment 110.

Image asset creators use the interactive environment 110 to
define and publish image asset. An image asset description
identifies the software comprising the image asset and
describes the operations required (including all parameters)
to configure the image asset at deployment time. An image
asset creator can directly import image asset created exter-
nally or can define an image asset directly. Image asset cre-
ators can then extend image asset (creating new image asset)
by vertically composing bundles onto the image asset. The
interactive environment 110 matches the defined require-
ments and capabilities of the bundles with those of other
bundles and the image asset to validate the proposed compo-
sition. Furthermore, the interactive environment 110 medi-
ates between the image asset definition and a build environ-
ment when necessary to deploy a base image asset, deploy
new software and to recapture the disks as part of anew image
asset. Completed image assets can be published as reusable
assets to a shared repository 118, as shown in FIG. 2.

FIG. 3 shows one example of a more detailed view of one
embodiment of the interactive environment 110. A user inter-
face 112, 114 is communicatively coupled to the interactive

US 9,280,335 B2

7

environment 110 that allows users to access all functions of
the interactive environment 110. This includes the ability to
create composable software bundles and compose them onto
an image asset. A bundle definer 302 manages composable
software bundle definitions. The bundle definer 302 supports
the import, modification, export, and publication of bundles.
The bundle definer 302 reads existing bundles from and pub-
lishes new bundles to the bundle repository 116.

The bundle definer 302 (and image asset definer 304) com-
prises logic to manage bundles (and image asset). This logic
supports the import, modification and export of bundles (and
image assets). An execution package builder 306 converts an
image asset into a script (or workflow) that can be executed by
an execution engine 308 for a particular image targeted for a
particular cloud platform. This component encapsulates the
cloud platform specific configuration logic.

The image asset definer 304 manages the definition of
image asset. The image asset definer 304 supports the defini-
tion of new image asset and the definition of image asset by
extension from an existing base image asset. Existing bundle
definitions (from a bundle repository 116) can be composed
with the image asset to extend it. Specifically, the image asset
designer/builder is responsible to select at least one bundle to
add to the image asset. The image asset definer can also
specify for each operation available in the chosen bundle,
when it will be executed. For example, the image asset
designer can decide that an operation to install a software will
be executed one as part of the build phase of the image asset
life cycle. He/She can further decide that an operation to
configure the software will be executed at each new deploy-
ment of the new image asset after it is built. The image asset
designer can further designate a certain operation (for
example to reset/cleanup logs) to execute upon each capture
life cycle phase of the new image asset. Other life cycle
phases such as “start” or “stop” can be supported using this
approach. While the bundle definer may specify intended life
cycle phase for each operation included, i.e., he/she can
specify that an operation is intended to run as part of build life
cycle phase, or any other life cycle phase, it is ultimately the
decision of the image asset designer at what life cycle phase
to execute each operation. For example an operation to install
or configure a software module may be designated to run at
once at build, or it can also be designated to run at each
deployment of the image asset.

Also, various embodiments of the present invention sup-
port two methods for extending image asset. The first method,
“captured-installed”, goes through a build of a new image
asset, and then capture, thus producing a new virtual disk. The
second method, “install-on-Deploy”, produces the new vir-
tual image asset without capturing a new virtual disk. Thus, a
build phase is not a valid selection for an operation execution
if the image asset designer is choosing to use this method of
extension. In the second phase, the image asset designer can
chose operations from the SW Bundle to execute at each new
deployment (deployment life cycle phase), or other life cycle
phases if they are defined such as “start”, “stop” and eventual
(future) capture of the new image asset.

When necessary (or desired), the image asset definer 304
uses the execution package builder 306 to convert additions to
a base image asset into execution packages, which represent
the specific binaries and scripts needed to install and config-
ure one or more composable software bundles in a specific
image asset targeted at a particular cloud platform as part of
the virtual image build life cycle phase. These execution
packages are then deployed to a running virtual system (not
shown) in a build environment 120 via an execution engine
308. The image asset definer 304 reads existing image asset

10

15

20

25

30

35

40

45

50

55

60

65

8

from and publishes new image asset to the image asset reposi-
tory 118. It should be noted that an image asset importer can
added that imports an image asset from another source such as
another cloud, another repository, a running virtual machine,
the file system, etc.

The execution package builder 306 takes an image asset
definition including software bundles that are identified as
new bundles to be added to the image asset. The execution
package builder 306 converts these details into one or more
execution packages that can be executed on the base image
asset to install the specified software bundles and to configure
anything necessary for deployment time configuration. Spe-
cifically, the execution package is a worktlow that executes all
operations provided with the software bundle that are chosen
by the image asset builder to execute at the virtual image asset
build life cycle phase (if it is valid), and will configure the rest
of the life cycle operations to execute at the designated life
cycle phases. For example, the workflow will register opera-
tions to execute at the deployment life cycle phase (aka,
configuration operations), or as part of the capture life cycle
phase based on the image asset builder design using the
appropriate mechanism. For example, when the target cloud
is an IBM WebSphere CloudBurst Appliance (WCA), the
Virtual Solutions Activation Engine needs to be configured.
The execution package builder 306 creates execution pack-
ages that are target cloud specific. The execution package
builder 306 combines the cloud independent definition from
the software bundles with internal logic to create target spe-
cific execution packages. Because the logic necessary to cre-
ate valid execution packages differs for different target cloud
environments, an execution package builder 306, in one
embodiment, is created for each target platform.

The execution engine 308 is used to deploy image asset,
deploy software bundles (as execution packages) and recap-
ture the image asset. Execution environments interact with an
existing build environment, for example, an existing cloud or
hypervisor. Users can directly access the virtual machines
created by an execution environment to inspect changes and
to manually modify the image asset. The interactive environ-
ment 110 provides an execution engine 308 for interaction
with a hypervisor. However, this engine 308 can be replaced
with an external engine providing, in one embodiment, the
external engine implements a particular Representational
State Transfer (REST) interface. It should be noted that vari-
ous embodiments of the present invention are not required to
implement a REST interface.

As discussed above, the build environment 120 provides
the interactive environment 110 with virtual machines with
which it can build image asset. To support the interactive
environment, a build environment needs to be able to deploy
image asset, for example, as virtual machines, and in one
embodiment, support capture. Examples of build environ-
ments are a hypervisor or an existing cloud.

The interactive environment 110 interacts with bundle and
image asset repositories 116, 118 to persist reusable bundle
and image assets, as discussed above. The interactive envi-
ronment 110 provides default bundle and image asset reposi-
tories 116, 118. These can be augmented with additional
external repositories providing they implement a particular
REST interface to allow access to the repository assets.

The interactive environment 110 also comprises an image
asset exporter 310. Image assets can be exported from one
repository and prepared for import in a second repository.
Image asset exports are target repository/cloud platform spe-
cific hence, each supported target format needs to be sup-
ported by a different image asset exporter 310. The image

US 9,280,335 B2

9

asset exporter 310 is responsible for creating any necessary
target specific metadata and producing a target specific pack-
age.

The interactive environment 110 is advantageous because,
among other things, it provides advanced planning; separa-
tion of roles, modularity, and re-use; and flexibility. With
respect to advanced planning, the interactive environment
110 helps auser find compatible assets such as, but not limited
to, a base image asset compatible with a SW component to be
installed, resolving dependencies, and sorting order of instal-
lation and/or configuration. With respect to separation of
roles, modularity, and re-use, users usually cannot take
advantage of work done by other users. This is because image
asset, software packages, and configuration scripts are not
cleanly separated, and are not associated with sufficient infor-
mation to make sense of available components, precluding
programmatic/automatic approach for planning/design. The
interactive environment overcomes this problem by provid-
ing separation of roles, modularity, and re-use. With respect
to flexibility, the interactive environment 110 provides a flex-
ible way to configure an activation mechanism for new SW
components (e.g., drive registration of new configuration
scripts).

Most existing tools are basically script-based where the
user is required to write a script for installation or configura-
tion. In most build tools there is no distinct design phase at all.
However, with respect to one or more embodiments, in the
design phase users simply select what SW they want to add,
and what parameters they want to expose and the tool helps by
leveraging semantically rich meta data to filter wrong
choices, show available assets (including deployment con-
figuration) and alert on existing gaps and missing pieces.
Most existing tools do not support separation of roles and
re-usability of assets—there is one role “image builder” and
there is no way for different image asset builders to re-use
portions of assets. Activity of image asset building basically
starts from scratch each time. In one or more embodiments, an
“expert user” defines a composable software image asset
bundle that is self describing and can be re-used across image
assets, platforms, clouds, and with different styles of image
asset extension/customization. Thus, the role of the image
asset builder is much simplified by just re-using bundles, and
the amortized complexity of image asset building is reduced
significantly. Also, various embodiments of the present
invention allow life-cycle operations to be added to image
assets during the design phase of the image asset. Conven-
tional tools do not provide this. Life-cycles operations, in one
example, are scripts that are to be executed at distinct life-
cycle phases such as, but not limited to, a deploy stage and a
capture stage.

Designing and Building Image Assets Using Semantically
Rich Composable Software Image Bundles

The proliferation of virtualization and cloud environments
has become a major challenge to software and solution pro-
viders. Software providers are increasingly being asked to
provide image-based distributions of their software products.
At the same time, constraints on licensing, patching, moni-
toring, security and other management clients, as well as
image asset imports preclude the use of a single golden oper-
ating system image across clouds. Furthermore, the early
stage of standardization on image metadata forces software
providers to support multiple formats to describe their offer-
ings (e.g. OVF, WCA parts, IBM Smart Business Develop-
ment and Test on the IBM Cloud parameters.xml, etc). Solu-
tion providers face similar challenges that are exacerbated by

20

40

45

55

10

the combinatorial complexity of their multi-image solutions
requiring deployment orchestration, and configuration propa-
gation.

Therefore, various embodiments of the present invention
support scalable development of software and solution assets
that are interchangeable across different clouds. One or more
embodiments of the present invention satisfies the following
architectural requirements. (1) Separation of the software
from the image and cloud on which it is to be added. This is
advantageous because the large number of base Operating
System images and cloud combinations means that software
providers will not be able to build and maintain virtual image
assets of their applications on all possible combinations. The
providers will, therefore, find it necessary to provide a pack-
aging of their software which supports users bringing their
own OS and cloud target. (2) Composition of software from
different providers. This is advantageous because the type of
environment being targeted, such as development versus
staging, effects the distribution of middleware and applica-
tion components across stacks. The addition of security, man-
agement, and monitoring agents results in an exponentially
sized space of possible software combinations, and, thus,
renders the static creation of images impractical. One or more
embodiments, therefore, allow image asset creators the flex-
ibility to combine software elements for inclusion in an image
asset. The resulting image assets are composable to support
reuse at the image level. (3) Constraining of valid deployment
patterns. This is advantageous because the flexibility afforded
by the separation of software and support for composition
created challenges to image asset creators. Therefore, one or
more embodiments, support representation and enforcement
of patterns for deployment best-practices.

In addition, various embodiments of the present invention
provide an interoperable format across different clouds,
hypervisors, and execution engines, such as: IBM Smart
Business Development & Test on the IBM Cloud, IBM Web-
Sphere CloudBurst Appliance, Virtuoso, VMware ESX, IBM
Rational BuildForge, IBM Tivoli Provisioning Manager, and
IBM Tivoli Service Automation Manager. Also, one or more
embodiments are compatible with multiple styles of image
asset extension: (a) deploy image asset, install bundle, cap-
ture image asset and activate software per deployment, (b)
install bundle offline and activate software per deploy, (c)
overlay bundle installation artifacts and install per image
asset deployment. These embodiments provide a description
of'the software’s requirements and capabilities to ensure valid
composition. A description of the steps that need to be
executed and their parameters are provided in a manner sup-
porting binding to cloud and image-specific activation
mechanisms (both internal as well as external to the image
asset such as in an activation engine). Support for modeling
software installation and configuration across different plat-
forms (Windows, Linux, AIX, ZOS) is also provided.

As discussed above, the interactive environment 110 is a
tool that allows virtual assets to be designed/built using com-
posable image software bundles (“bundles™) ina platform and
cloud agnostic manner. Based on the result of a design phase,
a new image asset can be “compiled” based on the choice of
a platform, cloud, and image asset extension “style”.

A bundle captures the semantic and topological knowledge
of a software component including the installation and runt-
ime requirements, the software structure, its capabilities, and
configuration. In addition, bundles include artifacts, such as
installation archives and scripts, as well as the operations that
need to be invoked, such as to execute the installer with a
response file, along with meta data describing these opera-
tions, their dependencies, parameters and requirements. A

US 9,280,335 B2

11

bundle can include or be associated with multiple different
configuration options. Each such configuration option is by
itself a bundle that describes the parameters, requirements,
and affects of the configuration operation in a semantically
rich formal manner. An image asset builder can choose to run
a configuration operation once, e.g., to configure security, and
then capture the result, or expose the option to run it with
different parameters at each instance deployment of the
image asset.

Stated differently, a bundle is an asset capturing knowledge
on how to install and/or configure software on one or more
virtual image asset. The bundle packages the metadata
describing the requirements for software installation and/or
configuration, the effects of applying the bundle to an image
asset, along with the operations that need to be executed and
the artifacts associated with these operations. A key require-
ment for bundles is the ability to use them across different
virtualization and cloud computing environments. This uni-
versality is achieved through the use of a common model for
resource requirements and capabilities as well as operational
execution. When a bundle is added to a virtual image asset
hosted by a specific cloud, its metadata is used to generate
cloud-specific configuration files and an execution package to
invoke the operations on the image asset.

In addition to a bundle, various embodiments also utilize
the concept of an image asset, which packages together a
virtual image asset; semantic knowledge, which represents
the image asset software stack and configuration; and func-
tional knowledge of deployment configuration options for
this image asset. FIG. 4 shows a high level example of logi-
cally adding a bundle to an image asset. For example, FI1G. 4
shows a bundle 402 comprises metadata 404 and artifacts
406. FIG. 4 also shows an image asset 408 and that add/
configure software 410 can be used to logically add the
bundle 402 to the image asset 408.

The design process of virtual assets using bundles, in one
embodiment, comprises various roles such as a bundle author
and an image asset author. A bundle author defines a bundle
by defining the semantic and topological knowledge of the
software, providing the scripts, and their metadata descrip-
tion, along with other required artifacts. The bundle author
can be an expert on installing or configuring one or more
software products on a virtual image asset. This user under-
stands the software requirements on the virtual server in terms
of added memory and disk space, as well as architectural
constraints such as processor type and bus width. Similarly,
the user understands the requirements on operating system
type, distribution, and level, as well as additional software
products that may be required. The user also knows the
parameters of the software products installed. The user is an
expert on the artifacts needed to install or configure the soft-
ware product involved, and can script their invocation. The
bundle author does not have to be an expert on metadata
formats for describing the requirements, capabilities and
operations of the bundle, but instead can interact with a
simple web interface that will collect this information and
generate the bundle package.

An image asset author selects a base image asset and
extends it with one or more bundles. The image asset author
uses one or more bundles to vertically extend one or more
base image asset for a particular purpose. The image asset
author can an expert in identifying the type of software that
needs to be installed and configured, but, is not required to be
proficient in installing manually or in scripting the installa-
tion. Instead, the user selects bundles which package the
desired software, leveraging the knowledge on requirements
and operational execution that is captured in those bundles.

5

10

20

25

30

35

40

45

55

60

65

12

Another applicable role is a cloud adapter who is an expert
who understands the Composable Software Bundle specifi-
cation, the format of a specific cloud’s metadata, as well as the
mechanism for executing operations. The cloud adapter
encodes the logic to import/export cloud-specific metadata
to/from the bundle models. He/she also encodes the logic to
generate an execution package to invoke the software install
or configuration operations.

Turning now to bundle authoring, bundle authoring is a
design activity that is performed purposefully in an agnostic
fashion with respect to how the bundle is to be used. The
bundle design process does not consider peculiarities of par-
ticular cloud environments or specifics of different image
asset extension styles (e.g., install-on-deploy vs. captured
install). The bundle author is an expert in the software domain
and, thus, understands the installation options of the software
and its configuration options. The bundle authoring process
provides a semantically rich description of the software and
the installation and configuration scripts: their parameters,
requirements, and affects.

In an install-on-deploy extension process software and/or
configuration logic is added to a base image asset. The output
is an image asset that references the original disk image. In
other words, a new virtual disk is not created. The new soft-
ware from the software bundle is installed at each deployment
of'the new image asset. In a captured-install extension process
software and/or configuration logic is also added to a base
image asset. A new virtual disk is created as a result of the
captured-install process.

FIG. 5 shows a high level overview of a bundle design
process. In particular, FIG. 5 shows that a bundle author 202
interacts with a bundle design tool 502 such as the interactive
environment 110. The bundle author 202 is able to retrieve
information on available bundles for re-use and composition
from the bundle repository 116 to create a bundle 402. The
created bundle 402 is then stored within the bundle repository
116. In should be noted that the bundle authoring process does
not require interaction with clouds or running instances.

FIG. 6 shows a more detailed operational flow diagram for
a bundle design process. It should be noted that the steps
shown in FIG. 6 are not limited to being performed in the
order shown in FIG. 6. FIG. 6 shows that the bundle author
can perform a number of activities in a flexible order. For
example, anew bundle (step 602) or a composed bundle (606)
can be created. With respect to creating a new bundle (step
602), this new bundle includes the installation script and the
associated metadata. The process flow performs an “or” loop
(step 608) until either scripts/binaries/other requirement arti-
facts have been uploaded (step 610); metadata describing
software, installation, or configuration script has been
authored (step 612); or relationships (required/optional) to
other existing bundles has been created (step 614). Once the
“or” loop has completed the new bundle is published to the
repository 116 (step 616).

The authoring step (step 612) also comprises an “or” loop
(step 616) comprising a plurality of processes. For example,
afirst process authors a semantic model describing the result-
ing software installation and/or configuration (step 618). A
second process authors software requirements (such as oper-
ating system types, capacity, dependencies on other software,
and the like) (step 620). A third process authors operation
requirements (such as execution container or dependencies
on other software) (step 622). A fourth process describes
parameters to the operation and constraints on values (step
624).

With respect to the composed bundle (step 606) this bundle
comprises two bundles that are all compatible and optional

US 9,280,335 B2

13

propagation relationships between parameters. In the process
of image asset creation, if a composed bundle is selected,
operations from both bundles are executed. FIG. 6 shows,
with respect to creating a composed bundle (step 606), that
combinations (such as bundle, bundle) are selected (step
640). Customization is performed (such as defining attribute
parameter propagation and selecting default/mandatory val-
ues for parameters) (step 642). The composed bundle is then
published at the bundle repository 116 as a new software
bundle (step 644).

As can be seen from the above discussion, a bundle cap-
tures the requirements and capabilities for installing or con-
figuring a software package along with the artifacts, such as
installation archives and scripts, as well as the operations that
need to be invoked, such as to execute the installer with a
response file. FIG. 7 shows a logical bundle structure result-
ing from the process discussed above with respect to FIG. 6.

In particular, FIG. 7 shows that the bundle 402 is associated
with requirements 704, capabilities 706, artifacts 708, and
operations 710. A bundle has certain requirements 704 on the
image asset that it will be added to. Some of these require-
ments come from the compatibility matrix for the base soft-
ware being installed or configured. For example, a bundle for
DB2 ESE v9.7 on 32-bit Linux requires certain distributions
and versions of Linux (e.g. SLES10.2 or SLES 11 or RHEL
5.4 or Ubuntu 8.0.4.1), hardware properties (e.g. 32-bit pro-
cessor), and disk and memory space. The base software can
also require the presence of software on the image asset to
enable some functionality. For example, the secure remote
management capability of DB2 requires the presence of an
SSH client on the image asset. Other requirements can come
from the scripts that are used to install the software product.
For example, the installation script can be written in Perl and,
thus, require a Perl interpreter, even though the software
being installed does not have such a requirement. Similarly,
the bundle can download the installer ISO from a build server,
and, thus, require network access and additional disk space to
store and expand the archive.

The requirements for a bundle can become complex in
structure. For example, DB2 ESE v9.7 on Linux can require
SLES10.2 or SLES 11 or RHEL 5.2 or Ubuntu 8.0.4.1 and
have different software package requirements based on which
operating system is targeted. Some requirements can be over
ranges of values, such as CPU>=2 GHz. Such constraints
over multiple related objects can be expressed declaratively
as and-or trees, or can be expressed as object-based patterns
that must be realized over the configuration of the target
image asset.

FIG. 8 shows an example where the DB2 requirements can
be expressed using a simplified visual representation of an
object-based pattern. Square cornered rectangles represent
units of deployment associated with an initial and a desired
state. Dashed rectangles represent conceptual units which
have to be realized by units deployed on the image asset. The
links represent typed relationships associated with strong
semantics, such as hosting. Rounded rectangles represent
constraints bound to a deployment unit whose context can be
the unit itself, or a related unit.

The specific pattern in FIG. 8 expresses that the DB2 ESE
v9.7 installed by this bundle needs to be hosted on a Linux
operating system (shown in block 802), which can be realized
by either SLES10.2 or 11, or RHEL 5.2 (shown in blocks 804
and 806). If hosted on SLES10.2 or 11 then the software
packages “nfs-utils” (shown in block 808) and “openssh”
(shown in block 810) must be present to enable certain func-
tion (but can be installed after DB2 as well). If hosted on a
RHEL system then the “libaio” package (shown in block 812)

10

15

20

25

30

35

40

45

55

60

65

14

must be present before DB2 is installed. The capacity restric-
tion on the DB2 deployment unit binds to the first unit down
its hosting stack of type Server, and reserves 256 MB for use
by the DB2 server process (shown in block 814).

With respect to capabilities 706, adding a bundle to an
image asset changes the contents of the image asset by install-
ing, removing, or configuring software. The bundle needs to
declare its effects on the image asset stack contents. FIG. 8
showed a simple example of a generic software install unit to
represent the fact that the bundle adds a new software package
to the image asset, as shown by block 816. Generic software
install units can be associated with dynamic attributes to
represent additional configuration information, such as the
installation directory, the license, etc. Users can also instan-
tiate subtypes of the software install type which statically
declare the attributes of the deployment unit. FIG. 9 shows an
example of a dynamic as well as a static type extension to the
generic software install unit. Deployment units can also host
configuration units (which are not the same as configuration
operations) that model structural software configuration. For
example, the model for the DB2 ESE v9.7 install can include
information on new users created as well as DB2 configura-
tion such as the instances created, as shown in FIG. 10, which
is only one non-limiting example.

With respect to artifacts 708, a bundle can be associated
with one or more artifacts. These artifacts can represent con-
tent that can be locally copied into the image asset, remotely
executable content, as well as metadata and documentation
content. Locally copied content can include scripts, installers,
archives, and configuration files. Remotely copied content
can include workflows. FIG. 11 shows a logical bundle arti-
fact metadata example. Bundle artifacts are associated with a
source location which can be local to the bundle, which means
that the file contents are packaged with the bundle metadata,
or reference a remotely accessible resource, such a pointer to
the latest build of an application. Bundle artifacts can also be
associated with a target location which can be local to the
image asset, such as a full file system path (or a logical path
where the meaning of the path depends on the target cloud), or
external, such as the image asset record. When the target
location is specified, adding the bundle to an image asset
results in the artifact’s contents being copied. Additional
properties such as the ownership and permissions associated
with the new copy can also be specified. Artifacts are refer-
enced from bundle metadata model elements and thus seman-
tic information can be inferred about their function.

With respect to operations 710, an operation provides
implementations of the logic that should be executed at spe-
cific life-cycle phases of the image asset. In particular, opera-
tions can include logic to install the software in the bundle on
animage asset, logic to configure the software when an image
asset comprising the software is deployed, and cleanup logic
to be executed prior to the capture of the image asset as a new
image asset. Operations executed at other life-cycle phases
such as software startup or shutdown can also be included.

The operations are ordered and can be associated with
parameters. Operation parameters can be associated with a
name, label, description, a set of default values, or other
items. Operations can further be assigned to execute in a
specific stage of the image life-cycle. The following three
stages are supported. (1) Build: this is a stage in which the
image asset is built either by an instance being started for
modification (installation or configuration) and then cap-
tured, or by modifying the image disk in an off-line manner.
(2) Capture: this is the stage where the image asset is about to
be shutdown so that its disks can be captured. Bundles con-
tribute cleanup operations to this stage to reset sensitive con-

US 9,280,335 B2

15

figuration (such as passwords, or logs). (3) Deploy: this is the
stage where an instance of an image asset is deployed. At this
stage, bundles can contribute all the types of operations that
were applicable to the build stage, but also configuration or
activation operations to reconfigure software based on newly
cloud-assigned parameters, such as the hostname, or user
assigned parameters such as a password.

In terms of execution context, operations can be broadly
characterized as internal (local) to the image asset, or exter-
nally executed. Presently, the specification only supports
local operations; however the definition of operations is
extensible. Various core local image operation types are sup-
ported. For example, (1) Local execute: supports modeling
the execution of a script or program on the local operating
systems. Supports collecting parameters from the user and
expressing how they are to be passed to the program invoked.
Also supports specifying the user under which this operation
is to be executed, as well as the working directory, and the
shell. Only headless commands can be executed to support
unattended deployments. The following are specializations of
the local execute operation type: (2) Local un-archive: sup-
ports extracting an archive into the image asset. Identifies the
destination directory, user and group owner. Delegates the
determination of the command to execute to the execution
framework and thus reduces platform dependencies (e.g.
paths to specific utilities, etc). (3) Local install: supports
running a platform installation package (such as an RPM).
Supports defining a package repository to pull the package
and/or its dependencies automatically (e.g. yum). Delegates
the determination of the commands to execute to the execu-
tion framework to reduce platform dependencies.

The most basic type of operation is the local-execute opera-
tion which runs a program inside the image asset. The pro-
gram executed can be already present in the image asset as
part of the operating system or the installation of another
software product. For example, the local-execute operation
can invoke the Linux operating system “adduser” program to
create a new user on the image asset. Alternatively, the com-
mand executed locally can have been copied as a file from the
bundle artifact.

For example, consider a bundle to install DB2 ESE v9.7 on
a Linux-based image asset. The software product is packaged
as a TAR/GZ encoded file archive which needs to be
extracted. The extracted file archive contains a binary
installer called “db2setup”. Normally, the DB2 setup pro-
gram runs in a graphical interactive mode unless started with
a flag to indicate that the installation parameters are to be
collected from a response file. Therefore, the bundle also
includes a response file for DB2 that comprises attribute-
value pairs for the default values. If the bundle is to support
user deploy time parameters then it also needs to include an
installation script that transforms the response file based on
the values selected by the user.

FIG. 12 shows a logical representation of a local execute
operation that is associated with the bundle to install DB2
ESE v9.7. The operation executes a shell script called
“installDB2.sh” which is packaged with the bundle as an
artifact. The operation declares two parameters called
“db2InstDir” and “db2inst1 Password™ to collect the directory
where DB2 is to be installed, and the password ofthe db2inst1
user. The invocation of “installDB2.sh” includes the knowl-
edge of how to pass the parameters to the shell script. Inter-
nally, the shell script makes assumptions about the presence
of the response file and the DB2 install package that are also
added by the bundle as artifacts to be copied into the image
asset. The script substitutes the installation directory on the
response file, un-archives the install package, and runs the

10

15

20

25

30

35

40

45

50

55

60

65

16

“db2setup” command. In this example, the user manually
wrote the “installDB2.sh” script. Alternatively, the user could
have defined three local execute operations to run sed, un-
archive, and run db2setup.

The following is an activation example. Consider a bundle
for configuring a DB2 ESE v9.7 installation by changing
some of its attributes, such as the hostname, and the db2inst1
user password, as shown in FIG. 13. This bundle declares in
its requirements the fact that DB2 ESE v9.7 has already been
installed. Its capability specifies that it changes certain
attributes on the image asset. The bundle comprises a run
operation with the specified parameters indicating that it is to
be executed at image-deploy. In this example the run com-
mand parameters are serialized using a pattern “<com-
mand>--paramName value” specifically “/usr/sbin/
configDB2.sh--db2Hostname=valuel--
db2Inst1Password=value2”.

The above discussion was directed mostly towards bundle
authoring, a more detailed discussion is now given with
respect to creating an image asset. During an image asset
creation process performed using the interactive environment
110, the image asset author decides which bundle to put on a
selected base image asset and what deployment parameters,
and options to expose. A same base process for designing an
image asset is followed, and a same collection of bundles can
be re-used no matter what the target cloud (or local build
environment) and image asset extension style (“install-on-
deploy” or “captured install”) style are.

The process for designing an image asset comprises select-
ing a base image asset; iteratively selecting a bundle to add to
the image asset (any type); configure parameters (what will be
exposed as asset parameter, vs. provide fixed values, or
default values); and decide what operation is to be executed at
what life-cycle phase, i.e., at each instance deployment, upon
every capture (software reset operation), and upon capture,
but only once prior to first capture (install software to be
captured).

The interactive environment 110 leverages the semantic
knowledge both associated with the image asset as well as
with the bundles to guide the user through the design process.
The interactive environment 110 allows filtering to find com-
patible asset combinations (image asset, bundle), (bundle,
bundle), (image asset, image asset). The interactive environ-
ment 110 alerts the user if there are gaps in the design. For
example, if a bundle requires another bundle that is not cur-
rently available on the image asset, nor selected by the user
the interactive environment 110 notifies the user. The inter-
active environment 110 provides information on bundles for
configuring software components that are compatible with
the software bundles the user selected, or composed bundles
that are compatible with selected bundle pairs (can be used to
cross configure these bundles). The interactive environment
110 provide the list of parameters associated with bundles and
allows the user to configure them with mandatory or default
values, as well as check these values against constraints
defined in the bundle, and propagate values across bundles
based on the parameter propagation relationships within
composed bundles.

FIG. 14 shows a high level overview of an image asset
creation process. As shown in FIG. 14 the image asset author
(designer) 204 interacts with an image asset design tool 1404
such as the interactive environment 110. The image asset
repository 118 holds image asset metadata as discussed
above. The image asset 408 (comprising bundles 402) them-
selves can be managed and stored by a cloud 1410 that is
either public or private. The image asset design tool 1404 can
be configured to work with a set of hypervisors running on

US 9,280,335 B2

17

user premise that act as a cloud 1410. Here, the hypervisors or
cloud is acting a build environment 120. The image asset
metadata can be part of the cloud infrastructure 1410 or
separate (if it is separate it can be necessary to correlate
information on available image asset from both the cloud
1410 and the repository 118). Note that for pure design activ-
ity it is not necessary to interact with the actual image asset
and/or with host hypervisors at all. However, the user may
want to interleave design and execution, where he/she selects
abundle, executes it on a running instance, then goes back and
select another bundle, and so on.

FIG. 15 shows a more detailed operational flow for an
image asset design process. As can be seen from FIG. 15, a
base image asset is selected (step 1502). A bundle is then
selected (step 1504). Bundle parameters are then configured
(step 1506). For example, fixed/mandatory values, optional/
default values, and/or the like are configured. A decision is
then made as to which life-cycle phase of the virtual image
life-cycle is execution to be performed (step 1508). For
example, the image asset life-cycle comprises various states
such as (1) deploy new instance and (2) capture. The choices
for bundle execution include: (a) execute bundle once as part
of the build life cycle phase (this is used to install software
prior to the first capture—the next time the captured image
asset is deployed the bundle will not execute); (b) run at each
deployment (this is used for deployment configuration, also
known as activation, or if capture is not necessary with install-
on-deploy style image asset extension); and (c) run any time
prior to capture (used for software reset scripts) (operations to
execute as part of capture life cycle phase) The bundle author
can indicate an intention for a bundle, or a script included in
abundle, e.g., indicating this is meant to be a reset script, but
ultimately it is the decision of the image asset author how to
use the bundle. In many cases, several options are valid.

Once the design process, which comprises steps 1504,
1506, and 1508, completes, synchronization (step 1510) and
publishing (step 1512) of the image asset occurs. [fthe design
process has not completed after the life-cycle decision pro-
cess (step 1508) the control flow returns back to step 1504. It
should be noted that that alternative orderings of the actions in
FIG. 15 are also applicable. In particular, the user can choose
to “synchronize” at multiple intermediary points. Another
example is that a bundle can be selected first and then a base
image asset second. The interactive environment 110 filters at
each stage and show only compatible assets.

As discussed above, a user can chose to execute an opera-
tion to install software module provided as part of a software
bundle at different life cycle phases. For example, the user can
chose to install the software once as part of the build life cycle
phase, or to install the software at each deployment (as part of
the deployment life cycle phase). The following discussion is
directed to various image asset creation examples involving
bundle addition. In practice, users extending image asset are
likely to mix these flows for different bundles based on
requirements. For example, consider the creator of an image
asset to test the latest version of a J2EE application. The
application requires a J2EE middleware container, which is
constant. Therefore the application can be added to the image
asset and captured on account that installing WebSphere
Application Server is a lengthy process. However, adding the
application prior to capture requires capturing a new image
asset whenever a new build of the J2EE application is made
available. Instead, the creator can choose to add the J2EE
application every time the image asset is deployed (deploy-
ment life cycle phase). This assures that a tester obtains the
latest build (the build ID itself could be a bundle parameter to
support testing older builds).

10

15

20

25

30

35

40

45

50

55

60

65

18

A bundle can be added to an instance of an image asset and
executed in the context of that instance with the purpose of
capturing the changed image asset. FIG. 16 shows one
example of an instance install and capture process. The
advantage of this approach is that users can perform manual
configuration steps after executing the bundle build opera-
tions, and that the effects of these manual steps are persis-
tently shared across all instances in addition to the executed
build operations. In a cloud environment the installed soft-
ware can sometimes cache information that changes across
image asset instances, such as the hostname and IP address
assigned by the cloud. In such cases, the configuration of the
software needs to be updated every time the image asset is
instantiated to “fix-up” (“activate”) the instance to the cloud-
assigned values for that instance. Depending on the cloud
used, the capture process can lead to a new image asset and
associated metadata (clone) or can result in a replacement of
the original image’s disk. In either case, the effects of adding
the bundle likely results in an update of the metadata pointing
to the newly captured disks.

The process, as illustrated in FIG. 16, begins with a running
instance of an image asset. The base image asset metadata are
used to check if the bundle is applicable to the instance.
Having verified compatibility, the bundle software is
installed, and then the instance is captured as a new image
asset. As part of the capture process, the original image asset’s
metadata including a semantic model and functional model
associated with the original image asset is cloned, and is
subsequently updated to reflect the capabilities added by the
bundle. The semantic model of the image asset describes the
software stack that is in the image asset and the functional
model includes the life-cycle operations that are currently
part of the image asset. These life-cycle operations, in one
embodiment, are a set of scripts that are to be executed a
various different life-cycle phases of the image asset such as,
but not limited to, build, deployment, and capture. For
example, life-cycle operations that are installation scripts are
executed during a virtual image asset build life-cycle phase.
Life-cycle operations that are configuration scripts are
executed during a virtual image asset deploy life-cycle phase.
Life-cycle operations that are reset scripts are executed dur-
ing a virtual image asset capture life-cycle phase.

A bundle supporting an off-line operation, which is an
operation that can execute against a mounted version of an
image asset, can be added by executing the operation on a
manager server to manipulate the contents of the image disk.
FIG. 17 shows one example of an off-line install process.
Depending on the cloud, off-line disk content updates can
result in a new image asset being registered in the catalog, or
can directly update the disk contents of an existing image
asset. In either case, the metadata pointing to the changed disk
(which can be a patch/view on the original) needs to be
updated to reflect the effects of adding the bundle.

The process, as illustrated in FIG. 17, involves a manage-
ment server that mounts the image disk at the file system
level. Having verified compatibility at the model level, the
bundles’ operations are executed on the management server,
making changes to the mounted disk image. Once completed,
the image is un-mounted, and its metadata are updated to
reflect capabilities added by the bundle. This pattern, in one
embodiment, needs support for mounting the image disks.

One way of adding a bundle supporting per-deployment
configuration is to add it to an image asset instance, schedule
it to be executed by the OS on the next image asset boot, and
capturing the image asset in this state. This process can be
referred to “schedule and execute on boot (activate) and is
shown in FIG. 18. Therefore, every time the image asset is

US 9,280,335 B2

19

deployed, the activation logic executes. The mechanism used
to execute on boot is platform specific (e.g. can use the IBM
Virtual Solution Activation Engine). One advantage of this
approach is that execution of the image asset configuration
logic is handled by the image asset itself and is not dependent
on any cloud services (such as the ability to overlay files at
deploy time).

The process, as illustrated in FIG. 18, begins by starting an
instance of an image asset. After checking bundle compat-
ibility, the operations of the bundle are scheduled to be
executed at the next time the image asset is started. The
specific mechanism for scheduling this execution is depen-
dent on the Operating System of the image asset. The instance
is captured in this state to execute the bundle on the next boot.
Every time the image asset is deployed, the bundle operations
executes to install the bundle software on the instance.

A bundle can be added to the image asset as part of the
deploy process if the cloud supports an overlay mechanism.
In this method, which is shown in FIG. 19, the base image
disk does not need to be changed or captured and all customi-
zation is performed individually on each instance. The advan-
tage of this approach is that the bundle can retrieve the latest
version of its artifacts. If the artifacts are updated daily, for
example from some build server, the image could satisfy the
requirements of a software tester who wants to test the latest
version of an application. The deploy per instance tlow, as
shown in FIG. 19, can support both installation as well as
configuration (including activation) bundles.

It should be noted that the bundle metadata describing the
requirements and capabilities of an asset can be useful in itself
even if the operations and artifacts are not used. For example,
auser can install DB2 manually and then use an install bundle
for DB2 to update the metadata of an image asset. Alterna-
tively, a user can be handed an image asset containing soft-
ware that has not been modeled and use bundles to describe it.
In this flow, the image asset contents are not changed, and
bundles are used only to update the image asset metadata to
better reflect the contents of the image asset.

Composable Software Bundles provide great flexibility on
how to package software functionality. For example, a bundle
can combine installation of a software product along with all
its deploy time configuration parameterization options.
Bundles can also be created to include installation and con-
figuration of multiple products across one or more image
asset. Therefore, the bundle creator faces the challenge of
deciding how to best divide his or her function into bundles.
In this section we will discuss some of the best practices in
determining how bundles are to be created in the context of
some high-level use cases.

To reduce the increased complexity brought on by the
fine-grained nature of bundles, two mechanisms are intro-
duced. The first mechanism is a relationship mechanism.
Software bundles, which contain only install operations, can
be related to their bundles, which contain only configuration
operations. Therefore, when a user selects a software bundle
to install a product, they can automatically, or through an
interaction, add the configuration bundles for that product, in
the correct order. Another mechanism is a pattern mechanism.
Users can create patterns of bundle composition that can be
shared. Therefore, when a user extends an image asset, they
can add individual bundles, or a pattern of bundles which
represents the selection and ordering of bundles. Using pat-
terns, users can share coarser grained software product and
configuration combinations without sacrificing the flexibility
of fine-grained bundles.

The specification of a bundle, in one embodiment, is based
on a platform independent model of an asset that contains a

20

25

30

40

45

50

55

65

20

number of artifacts. The asset is associated with attribute-
value pairs that describe the asset (e.g. the name of the
bundle), as well as semantic references to artifacts it contains
(e.g. the requirements and capabilities model). In addition,
the bundle asset can be related to other bundle and image
assets. These relationships are typed and have well defined
semantics (e.g. a configuration bundle configures an installa-
tion bundle). The asset model of various embodiments can be
mapped into a simple file based representation, as well as
richer asset repositories such a Rational Asset Manager
(RAM). The following discussion specifies the structure of
the bundle asset including its attributes, relationships, and
models.

The mapping oflogical bundle elements into an asset struc-
ture is illustrated in FIG. 20. FIG. 20 shows a bundle 402
associated with requirements 704, capabilities 710, artifacts
708, and operations 706, as discussed above with respect to
FIG. 7. The capabilities 710 and requirements 704 of the
bundle 402 are stored in a semantic topology file 2012. The
operations 706 and attributes artifacts 708 associated with the
bundle 402 are stored in the functional topology file 2014. In
one embodiment, the Zephyr deployment topology meta-
model is used to define the schema and semantics of the
semantic and functional topology files 2012, 2014. However,
other models can be used as well. The actual bundle artifacts
708 can be stored directly as files 2016 contained in the asset
2018, or as links to external artifact repositories. Information
about the asset itself, such as its name, id, version, creation
date, as well as the path to the semantic and functional topol-
ogy model 2012, 2014 are stored as attributes 2020 on the
asset 2018. Relationships 2022 to other bundle and image
assets are also stored in the asset 2016.

The bundle asset 2018 is associated with a set of attributes
and relationships 2020, 2022. The attributes 2020 are used to
describe the asset 2018, as well as identify artifacts 708 that
have additional information regarding the asset 2018. With
respect to attributes 2022, Table 1 below lists example of
attributes associated with a bundle asset in one embodiment.
The semantic and functional topology attributes identify the
asset artifacts representing the bundle’s capabilities/require-
ments and operations.

TABLE 1
Attribute Description
id The globally unique identifier of the asset
name The name of the asset

The version of the asset

The short description of the asset

The long description of the asset (rich text,
can refer to image asset artifacts)

version
shortDescription
longDescription

date The date when the asset was created.
Required Operating Identifies the operating systems that that this
System bundle can be added to (formatted in XML).

Required Software Lists the software that is required on the image
asset for this bundle to be added (formatted in
XML)

Lists the software that will be added to the
image asset when this bundle is added
(formatted in XML)

Identifies the semantic topology artifact
Identifies the functional topology artifact
Identifies the artifact containing the extended
documentation for this bundle.

Identifies the artifact containing the icon for
this bundle.

Provided Software

Semantic Topology
Functional Topology
Bundle Documentation

Bundle Icon

US 9,280,335 B2

21

Bundle assets can be related to other bundle and image
assets using the following non-exclusive example of binary
relationships shown in Table 2 below:

TABLE 2

Requires (bundle)
Required by (bundle)
Configures (bundle)
Configured by (bundle)
Used by (image assets)
Uses (bundles)
Satisfied by

Satisfies

Use of a bundle requires the presence of
another bundle in the image asset.

A bundle configures software installed by
another bundle. Does not imply requires.
Relates a bundle to all the assets of all
image assets it has been added to.

A bundle has requirements which can be
satisfied by another bundle or image asset
(computed from the semantic model).

A bundle has been tested and verified to
correctly deploy and/or configure an image
asset (manually created)

A bundle has been tested and found to fail
installation or configuration on a specific
image asset (manually created). Used to
trigger a workflow to fix.

Used when cloning a bundle for modification
to identify the bundle from which it was
cloned.

Deploy a bundle before another.

Verified on image
Verified bundle

Failed on image
Failed bundle
Extends (bundle)

Extended by (bundle)

Deploy before (bundle)
Deploy after

The semantic model 2012 is used to store the requirements
and capabilities of a Composable Software Bundle in the
format of a Zephyr deployment model. As discussed above,
the Zephyr model is only one model applicable to various
embodiments of the present invention. The Zephyr deploy-
ment topology is an XML formatted file used in a number of
IBM products and services to represent and interchange
deployment models.

The Zephyr deployment topology is a domain specific
language serialized as XML which is built on a core model.
The core model introduces the concept of a deployment unit
with capabilities and requirements. Units, capabilities, and
requirements can be related through a small set of typed links
representing common deployment modeling concepts: host-
ing, dependency, membership, grouping, and constraint.
ITterative modeling is supported through the concepts of
model imports (copy by reference), and conceptual units.
Conceptual units are realized against more concrete units and
enable modelers to express structural constraints on the
model using a simple yet powerful model-based approach.

Consider the semantic model for a bundle asset for install-
ing the IBM DB2 Enterprise Server Edition (ESE) v9.7, as
shown in F1G. 21. FIG. 21 shows a graphical representation of
a Zephyr deployment topology model for the bundle. The
bundle represents an installer which supports RHEL Linux
5.4+ (represent choices such as RHEL or SLES can also be
represented). The semantic model comprises a concrete (non-
conceptual) generic software install unit to represent the
effect of adding the bundle to the image asset, which is that
DB2 ESE v9.7 is to be installed. The DB2 unit is to be hosted
on an operating system unit that can realize the values of the
conceptual unit, which is that it must be a RedHat Linux
operating system version 5.4+.

The XML representation of the above topology diagram is
shown in FIG. 22. Note that the root element is a topology
which comprises two units. Each unit comprises its capabili-
ties and requirements as well as the links for which it is the
source. The consumption of memory and disk on related
resources down the hosting stack is captured using con-
straints.

The use of conceptual units supports a very rich language
for defining patterns. See for example, “Pattern based SOA
deployment”. W Arnold, T Eilam, M Kalantar, A Konstanti-

20

30

40

45

50

22

nou, A Totok, Service-Oriented Computing—ICSOC 2007,
Springer, which is hereby incorporated by reference in its
entirety. For example, in FIG. 23 it is shown how complex
structured requirements for the DB2 bundle for installation
can be specified in either SLES or RHEL. This is achieved by
hosting the DB2 Software Install unit on a conceptual oper-
ating system that has multiple realizations. The semantics of
multiple realizations is that of a structural choice (OR). In this
fashion, users can define requirement for another software
install by representing a conceptual unit that is hosted on the
generic Linux OS (applies to both RHEL and SLES), or only
on the RHEL or SLES unit, which means that it is required
only if that realization was matched.

Returning back to FIG. 20, the functional model 2014 is
used to store the operations and artifact properties of the
bundle in the format of a deployment model. The deployment
topology comprises a Virtual System unit that is associated
with a Task which groups a set of Operations with associated
parameters. Artifacts are associated with the virtual system
and steps. Steps represent actions that are to be executed in the
image asset. A small number of basic steps are supported such
as run and specializations of run such as install and un-
archive. The functional model 2014 stores the mapping
between the source location of the artifacts in the asset and the
target location where they are to be copied in the image asset.
The logical structure of the functional model is shown in FIG.
24. Using the Zephyr meta-model, the elements of the logical
diagram in FIG. 24 are modeled as linked units with require-
ments and capabilities.

Bundle operations are executed in the context of the image
asset to which the bundle is to installed. There are two basic
types of operations for the functional model structure of F1G.
24: those executing against a file mount of the image asset
contents, and those executing in a running instance of the
image asset. The base abstract type for operations running in
the context of an image asset instance is a Imagel.ocalOpera-
tion. Imagel.ocalOperationis a common supertype of all
operations executed in the running instance. In one example,
Imagel.ocalOperation attributes are: (1) scriptName: the
name of the script; (2) runAt: an enumeration of when the
operation needs to run in the life-cycle of the image asset. The
options are: (1) imageBuild: run as part of the construction of
an image asset that will be captured; (2) imageCapture: run as
part of the capture of an image asset (typically used for
clean-up actions); (3) imageDeploy: run as part of deploy-
ment of an image asset (typically used to activate image asset,
but can also be used to install software on every image asset
deploy); (4) runLevel: at which OS runlevel this operation can
be executed (e.g. 3, 5); and (5) serviceName: the name of the
OS service associated with the operation (optional).

The most basic type of operation is one to run a command
in the context of the image asset. The command is a string
passed to an interpreter in the image asset and executed in the
context of a user and a current working directory. The run
operation, for example, adds the following parameters to the
base Imagel.ocalOperation: (1) interpreter: the interpreter for
the command to be executed; (2) runAsUser: the user who
will own the process running the command; (3) workingDi-
rectory: the working directory of the process running the
command; and (4) runCommands: the command passed to
the interpreter.

An un-archive operation is used to extract an archive in a
platform independent manner. It is the responsibility of the
execution framework to translate the un-archive operation
into a run operation command appropriate for the target
image asset (e.g. /ust/bin/unzip). The un-archive operation
adds the following parameters to the base Imagel.ocalOpera-

US 9,280,335 B2

23

tion: (1) ownerUser: the user who will own the extracted files;
(2) ownerGroup: the group that is to own the extracted files;
(3) archiveType: the MIME type of archive; and (4) output-
Path: the location where the archive is to be extracted on the
local image disk.

An install operation is used to add a software package in a
platform independent manner. It is the responsibility of the
execution framework to translate the install operation into a
run operation command appropriate for the target image asset
(e.g. /ust/sbin/rpm). The install operation adds the following
parameters to the base Imagel.ocalOperation: (1) package-
Name: the name of the package; (2) packagePath: the location
of the package on the image asset; (3) force: true if the
package is to be installed even if already present, or if depen-
dencies are missing; (4) usePackageManagementSystem:
true if required packages that are missing should be retrieved
and installed from a repository; (5) repositoryUrl: the reposi-
tory from which required packages will be retrieved (if this
function is enabled); (6) repoType: the type of repository
from which required packages are retrieved (if this function is
enabled); and (7) rpmOptions: specific options passed to the
package installer.

FIG. 25 shows one example of a functional model for the
bundle to install DB2 ESE 9.7. The bundle is associated with
a task represented by an OperationGoupUnit to install DB2.
The task has a single step as a member to run the command
“/tmp/isntallDB2.sh”. The commands executed along with
the binary package for DB2 and the response file are refer-
enced as artifacts. The artifacts capture the mapping between
the asset-local location of the artifact in the asset, and the
location where they need to be copied in the image asset to be
accessible to the command. The Zephyr XML serialized rep-
resentation of a functional model for installing DB2 ESE
9.7.1 is shown in FIG. 26.

In addition, to the bundle comprising a semantic model and
a functional model, an image asset similarly comprises a
semantic model and a functional model, as discussed above.
When a software bundle is added to a base image asset to
create a new image asset, as discussed the new image asset
comprises metadata that is based on both the semantic model
and functional model of the base image asset and the semantic
model and functional model of the software bundle. For
example, FIG. 31 shows a base image asset 3102 comprising
a virtual disk 3104, a semantic model 3106, and a functional
model 3108. The semantic model 3106 indicates that the base
image asset 3102 comprises an operating system 3110, SLES
11 and a software component 3112, Activation Engine (AE),
that is installed on the operating system 3110 SLES 11. The
functional model 3108 describes the operations that come
with the base image asset 3102. For example, the functional
model 3108 indicates that an operation 3114, OP__1, which is
a network configuration operation, is within the base image
asset 3102. This operation OP__1 3114 is an activation/con-
figuration script. Therefore, this operation OP_ 1 3114 is
executed during a deployment life-cycle phase.

FIG. 31 also shows a selected software bundle 3116 also
comprises a semantic model 3118 and a functional model
3120 as well. The semantic model 3118 of the bundle 3116
indicates that the bundle 3116 comprises a software compo-
nent 3121, WebSphere, which has an operating system
requirement 3122 of SLES 11. The functional model 3120
comprises a set of operations. A first operation 3124, OP__1,
installs WebSphere. Therefore, the first OP_ 1 3124 is an
installation script that executes to install on the base image
asset 3102. A second operation 3126, OP_ 2, is a “config
thread pool” operation. This operation 3126 is a configuration
script. Therefore, the second operation OP__2 3126 executes

10

15

20

25

30

35

40

45

50

55

60

65

24

during a deployment life-cycle phase of an image asset. A
third operation 3128, OP_ 3, is a WebSphere reset operation.
Therefore, the third operation OP__3 3128 executes during a
capture life-cycle phase of an image asset.

FIG. 31 also shows a new image asset 3130 that is created
based on the base image asset 3102 and the bundle 3116, as
discussed above. If a captured-install image extension pro-
cess was used, the virtual disk 3131 of the new image asset
3130 is new. If an install-on-deploy image extension process
was used, the virtual disk 3131 references the virtual disk
3104 of the base image asset 3102. In either embodiment, the
virtual disk 3130 comprises updated metadata based on the
items of the base image asset 3102 and bundle 3116 used to
create the new image asset 3130. During new image asset
creation process the base image assets are started and OP__1
3124 from the bundle 3116 is executed to install WebSphere
since this is an installation operation. OP_ 23126 and OP_ 3
3128 are copied into the base image asset 3102, but are not
executed since they are only executed during the life-cycle
phase (e.g., deployment and capture) associated therewith.
These operations 3126, 3128 are registered with a mechanism
that executes them at the respective life-cycle phase, which is
deployment and capture in this example. OP__1 3124 is not
copied since it was only needed to install WebSphere onto the
image asset 3102.

The semantic and functional models 3106, 3108 of the base
image asset 3102 are updated based on WebSphere being
installed and OP__1 3126 and OP_ 2 3128 of the bundle 3116
being copied over. This results in a new semantic model 3132
and a new functional model 3134. The new semantic model
3132 in the new image asset 3130 showing that the operating
system 3110 is associated with two software components
SLES 3112 and WebSphere 3121 installed thereon. The func-
tional model 3134 comprises OP_1 3114 from the base
image asset 3102 and OP__1 3124 and OP_ 2 3126 from the
bundle 3126. Therefore, whenever the new image asset 3139
is deployed (i.e., the deployment life-cycle phase) OP_1
3114 from the base image asset 3102 and OP_ 2 3126 from
the bundle 3116 are executed. OP 3 3128 is executed during
a capture life-cycle phase of the new image asset 3130.

FIG. 32 shows various examples of how different opera-
tions are executed at various lifecycle phases of an image
asset. In particular, FIG. 32 is directed to a captured-install
image extension process. In this figure, an image asset
designer is interested in constructing a new image asset called
“fo0”. A base image asset 3202 is selected and a bundle 3204
is selected. As discussed above, the bundle 3204 (and base
image asset 3202) comprises a plurality of operations in addi-
tion to semantic and functional models. The creator of the
bundle 3204 may have declared at what life-cycle phase each
of these operations is to run. The image asset designer can
accept these declarations or create his/her own. In other
words, the image asset designer can override the declarations
of'the bundle creator and select the life-cycle phase for each
operation. This is represented by block 3206. As can be seen,
the image asset designer has determined that OP__1 is to run
at a build life-cycle phase, OP_ 2 is to run at an deployment
life-cycle phase (also referred to as an activation life cycle
phase), and OP__3 is to run at a reset life-cycle phase.

The build life-cycle phase then occurs where synchroniza-
tion and capture processes occur, as represented by blocks
3208 and 3210, respectively, to build a new image disk. Dur-
ing the synchronization process the bundle 3204 is copied
onto the base image asset 3202 to create a new image asset
and any operations such as OP__1 designated to run during the
build/install phase are executed. During the capture process

US 9,280,335 B2

25

any operations designated to execute in the capture life-cycle
phase such as reset operations from the base image asset 3202
are ran.

After the capture process has complete the new image asset
“fo0” is created with a new image disk. During a runtime
life-cycle phase, represented by block 3212 and optionally
block 3214, a deployment phase 3212 can occur where any
operations such as OP__2 (which has been copied over from
the bundle 3204) designated run during the life-cycle phase
are executed. If this image asset is as a base image asset to
create a new image asset, capture is run again, as shown by
block 3214, and any operations such as OP__3 (copied over
from the bindle 3204) are executed during this capture pro-
cess.

With respect to an install-on-deploy image extension pro-
cess the build phase shown in FIG. 32 is not performed. In
other words, a new image asset is not being produced; the
base image asset is being used but with updated metadata and
artifacts. For example, an image asset can comprise a script
that installs WebSphere as an activation script at the deploy-
ment life cycle phase. Therefore, every time the new asset is
started it does to the original disk and starts the original disk,
but since it includes this activation script that runs as part of
startup it will install WebSphere. In other words, the installa-
tion is performed as part of deployment.

FIGS. 33-35 show one example in which two composable
software bundles are added to an image asset. FIGS. 33-35
show how the semantic and functional models describing a
bundle can be used to determine if a bundle can be validly
added to an image asset. Further, FIGS. 33-35 show how the
image asset model is modified as the planned associations are
made. Finally, FIGS. 33-35 show how the model is modified
once the software described by the bundles is actually added
to the image asset via a synchronize operation.

In particular, FIG. 33 shows semantic and functional mod-
els of'a base image asset and semantic models of a bundle. In
this example, the image asset semantic model 3302 shows
that the operating system is SLES 11. This requires a x86
server (or virtual machine) to be validly deployed. In FIG. 33,
this requirement is expressed using a conceptual unit (one
with the conceptual attribute set to “true”) indicated visually
using parenthesis around the unit name. Further, the semantic
model 3302 shows that IBM Tivoli Monitoring 6.1 and Perl
5.10.1.1007 are already installed in the image asset. The
functional model 3304 shows that the image asset has one
configuration operation: ConfigNET.

The bundle semantic and functional models 3306, 3308 are
used by a WebSphere 7.0.0.7 bundle. The bundle semantic
model 3306 expresses a requirement for a Linux operating
system. The functional model 3308 shows that associated
with the WebSphere software is an install operation ‘install-
WAS_HV__7°. This operation requires (runs on) the same
Linux where the WebSphere software is to be installed and it
depends on ‘Perl’. In FIG. 33 the requirement that the oper-
ating system to host WebSphere and the install program is
shown using a technique called model import. This is shown
by the arrow 3310, 3312 labeled “<<import>>" between the
semantic and functional models. This arrow head 3310, 3312
points at the importing model. The importing model may
reference the units in the imported model. That a unit is
imported is shown visually using an arrow 3314, 3316 in the
upper left corner of the unit in the importing model.

In order for a bundle to be validly added to an image asset,
the requirements of the bundle must be satisfied. When these
requirements are specified using conceptual units (as in the
example WebSphere 7.0.0.7 bundle, satisfaction can be deter-
mined using a process, termed realization, in which the con-

10

15

20

25

30

35

40

45

50

55

60

65

26

ceptual units are matched to non-conceptual units in a second
model. Ifall the conceptual units can be matched, the require-
ments described by the conceptual units are satisfied. In FIG.
33, this process is shown by the dashed arrows 3318, 3320
labeled <<realize>>.

Once it has been determined that a bundle’s requirements
are satisfied by an image asset, the bundle may be added to the
image asset. The addition of the bundle results in changes to
the image asset model. In particular, the bundle models are
combined with the image asset models. Any non-conceptual
units in the bundle model are added to the image asset model
with relationships matching those expressed in the bundle.
This resulting image asset model, as shown in FIG. 34, com-
prises a semantic model 3402 and a functional model 3404.

FIG. 34 shows a second example of a bundle and its rela-
tionship to the modified image asset model. FIG. 34 shows
semantic and functional models 3402, 3404 of the image asset
modified by the process discussed above with respect to FI1G.
33. FIG. 34 also shows semantic and functional models 3406,
3408 of a second bundle. This second bundle describes a
configuration operation (ConfigWAS) and a cleanup opera-
tion (CleanupWAS). The semantic and functional models
3402,3406 show what software must be present for the opera-
tions to be valid. The software is again expressed using con-
ceptual units. The ConfigWAS configuration operation also
expresses a dependency on another configuration operation,
ConfigNET. Again the arrows 3410, 3412, 3414 labeled
“<<realize>>" show that the requirement in the bundle model
are satisfied by the image asset model created by adding the
bundle from FIG. 33. Because the bundles requirements can
now be satisfied, it can also be added to the image asset. The
resulting image asset model, as shown in FIG. 35, comprises
a semantic model 3502 and a functional model 3504.

FIG. 35 shows the impact to the image asset model once a
successful synchronize operation is executed. For example,
FIG. 35 shows updated semantic and functional models 3502,
3504 of the image asset and updated semantic and functional
models 3402, 3508 of the bundle. Any software installed by
the synchronize step is marked as “installed” as depicted by
the circle 3510 in the bottom right corner of each unit. Sec-
ondly, any install operations in the model are removed.

FIG. 27 shows an overall operational flow diagram for
extending an image asset in a local build environment such as
a hypervisor. A user, via the interactive environment 110,
selects an existing image asset to extend from the image asset
repository 118 (step 2702). The user enters input into the
interactive environment 110 such as name, description, and
version of the image asset (step 2704). The interactive envi-
ronment 110 creates the image asset comprising asset prop-
erties (names description, etc.), copies of metadata from the
original asset, semantic model, functional model, hardware
model, and references to disk image (step 2706). The image
asset at this point is synched.

The user, via the interactive environment 110, edits the
image asset definition by adding bundles, setting parameters,
etc. (step 2708). The user, via the interactive environment
110, saves/exits the image asset definition edit mode (step
2710). The interactive environment 110 updates the image
asset based on the user input (step 2712). The image asset is
out of synch at this point. The user, via the interactive envi-
ronment 110, selects the synchronization option to synchro-
nize the image asset (step 2714). The interactive environment
110 initiates the synchronization process (step 2716). The
interactive environment 110 determines if the image asset is
to be deployed (step 2718). If so, the local build environment
performs various operations for deploying the image asset
(step 2720). If not (or after the deployment process) the inter-

US 9,280,335 B2

27

active environment 110 generates execution packages (step
2722). The local build environment then executes the execu-
tion package(s) (step 2724). The interactive environment 110
then updates the models within the image asset accordingly
(step 2726). The image asset is now synchronized at this
point.

If the user wants to continue editing the image asset defi-
nition the control flows back to step 2708, if not the user, via
the interactive environment 110, captures the image asset
(step 2728). The local build environment stops the virtual
machine (step 2730). The local build environment then cap-
tures disks or transfers the disks (step 2732). The user, via the
interactive environment 110, publishes the image asset (step
2734) and may optionally export the image asset (step 2736).
In one embodiment, the exported image asset comprises a
WCA specific Open Virtual Appliance (OVA), asset proper-
ties, semantic model, functional model, WCA specific Open
Virtual Format (OVF), disk image, and part definitions. The
interactive environment 110 then targets a specific export
(step 2738).

FIG. 28 shows an overall operational flow diagram for
extending an image asset in a cloud environment such as the
IBM Smart Business Development and Test cloud. The user,
via the interactive environment 110, defines access to the
cloud environment (step 2802). The user, via the interactive
environment 110, selects a data center if multiple choices are
available for the cloud (step 2804). The user, via the interac-
tive environment 110, identifies/configures the interactive
environment primary repository if necessary (step 2806). The
user, via the interactive environment 110, selects an existing
image asset to extend by a capture process from the comput-
ing cloud (step 2808). The user enters input into the interac-
tive environment 110 such as name, description, and version
of the image asset (step 2810). The interactive environment
110 determines if the base image asset exists in the interactive
environment repository (step 2812). If not, the interactive
environment 110 creates the base image asset, which is
synched (i.e., no software bundles are in an uninstalled state)
(step 2814). The control then flows to step 2816. If the base
image asset does exist in the repository then the interactive
environment 110 creates a target image asset, which is in a
synched state (step 2816).

The user, via the interactive environment 110, edits the
image asset definition by adding bundles, setting parameters,
etc. (step 2818). The user then saves and exits the editing
mode of the interactive environment 110 (step 2820). The
interactive environment 110 then updates the image asset,
which is now in an out-of-synch state (step 2822). The user,
via the interactive environment 110, selects a synchronization
mode (step 2824). The interactive environment 110 starts the
synchronization process (step 2826). The interactive environ-
ment 110 determines if the image asset is to be deployed (step
2828). If so, then the image asset is deployed in the build
environment, which is a cloud environment in this example
(step 2830). The control then flows to step 2832. If the image
asset has already been deployed then the interactive environ-
ment 110 generates execution packages (step 2832). The
build environment then executes the execution packages (step
2834. The interactive environment 110 updates the models
within the image asset accordingly (step 2836). The image
asset is now synchronized at this point.

If the user wants to continue editing the image asset defi-
nition the control flows back to step 2818, if not the user, via
the interactive environment 110, captures the image asset
(step 2838). The interactive environment 110 the performs a
cleanup operation (step 2840). The interactive environment
110 then generates execution packages (step 2842). The build

10

15

20

25

30

35

40

45

50

55

60

65

28

environment executes the execution packages (step 2844).
The build environment captures the image asset (step 2846).
The user, via the interactive environment 110, then publishes
the image asset to the repository (step 2848).

FIG. 29 is an operational flow diagram illustrating one
example of creating a composable software bundle using an
interactive environment such as 110. It should be noted that
the models and/or bundles can be created manually without
an interactive environment. As shown in FIG. 29, the interac-
tive environment 110 retrieves a semantic representation of a
set of software modules (step 2902). In one embodiment the
semantic representation is created by a user. The interactive
environment 110 retrieves a function representation ofa set of
operations to be performed on the set of software modules
during at least one virtual image life-cycle in a set of virtual
image life-cycles (step 2904). In one embodiment, the func-
tional representation is created by a user. The interactive
environment 110 identifies a set of artifacts comprising at
least one of a set of data and a set of executable instructions
associated with the set of operations (step 2906). The execut-
able instructions can include installation scripts, configura-
tion scripts, uninstall scripts, delete file scripts, add file
scripts, and the like.

The interactive environment 110 stores the semantic rep-
resentation, the functional representation, and the set of arti-
facts, in a composable software bundle (step 2908).

FIG. 30 is an operational flow diagram illustrating one
example of creating a virtual image asset using composable
software bundles. The process shown in FIG. 30 is part of the
image asset definition processes 2708 and 2818 of FIGS. 27
and 28, respectively. As shown in FIG. 30, the interactive
environment 110 associates at least one composable software
bundle with a virtual image asset (step 3002). The interactive
environment 110 determines if the bundle is compatible with
the image asset (step 3004). If the result of this determination
is positive the control flows to step 3010. If the result of this
determination is negative, the interactive environment 110
notifies the user (step 3006). The interactive environment 110
may then optionally display a set of compatible bundles to the
user (step 3008). The interactive environment 110 also deter-
mines of the bundle or the image asset requirement additional
bundles (step 3010). If the result of this determination is
negative, the control flows to step 3016. If the result of this
determination is positive, the interactive environment 110
notifies the user (step 3012). The interactive environment 110
the displays a set of bundles required by the image asset of the
associated bundle (step 3014). The interactive environment
110 determines for each operation in the selected bundle and
base image asset a virtual image asset life-cycle phase that
each operation is to be executed in (step 3016). The interac-
tive environment 110 creates a new virtual image asset based
on the selected bundle and the base image asset (step 3018).
The flow then exits (step 3020).

As can be seen from the above discussion, various embodi-
ments of the present invention help users design new bundles
and image assets. One or more embodiments leverage the
semantic knowledge in bundles and image assets to provide
capabilities such as search, and filtering to identify compat-
ible assets (bundle-bundle, bundle-image asset, image asset-
image asset); identifying gaps and missing software compo-
nents. Various embodiments also provide at least the
following advantages. (1) Separation of roles, modularity and
re-use: bundles can be combined in multiple different ways to
create different image assets. (2) Advanced design and plan-
ning capabilities, leveraging the semantic knowledge in
bundles and image asset. Such as search and filtering, order-
ing and so on. (3) Reduction of complexity of creating image

US 9,280,335 B2

29

assets, since the image asset author is re-using bundles and
tool is constructing all necessary workflows. (4) Increase of
level of assurance that the result is functional, since require-
ments and dependencies are handled earlier at the planning
stage. (5) Support for generation of multiple different for-
mats, for different clouds.

Cloud Environment

It is understood in advance that although the following is a
detailed discussion on cloud computing, implementation of
the teachings recited herein are not limited to a cloud com-
puting environment. Rather, various embodiments of the
present invention are capable of being implemented in con-
junction with any other type of computing environment now
known or later developed. For example, various embodiments
of the present invention are applicable to any computing
environment with a virtualized infrastructure or any other
type of computing environment.

For convenience, the Detailed Description includes the
following definitions which have been derived from the
“Draft NIST Working Definition of Cloud Computing” by
Peter Mell and Tim Grance, dated Oct. 7, 2009, which is cited
in an IDS filed herewith, and a copy of which is attached
thereto. However, it should be noted that cloud computing
environments that are applicable to one or more embodiments
of the present invention are not required to correspond to the
following definitions and characteristics given below orin the
“Draft NIST Working Definition of Cloud Computing” pub-
lication. It should also be noted that the following definitions,
characteristics, and discussions of cloud computing are given
as non-limiting examples.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be rap-
idly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed automatically without requiring
human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and

10

15

20

25

30

35

40

45

50

55

60

65

30

reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to the
consumer is to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application hosting environment configu-
rations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-
ture but has control over operating systems, storage, deployed
applications, and possibly limited control of select network-
ing components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-pre-
mises or oft-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized
or proprietary technology that enables data and application
portability (e.g., cloud bursting for load-balancing between
clouds).

A cloud computing environment is service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing is an
infrastructure comprising a network of interconnected nodes.

Referring now to FIG. 36, a schematic of an example of a
cloud computing node is shown. Cloud computing node 3600
is only one example of a suitable cloud computing node and
is not intended to suggest any limitation as to the scope of use
or functionality of embodiments of the invention described
herein. Regardless, cloud computing node 3600 is capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove.

In cloud computing node 3600 there is a computer system/
server 3602, which is operational with numerous other gen-
eral purpose or special purpose computing system environ-
ments or configurations. Examples of well-known computing
systems, environments, and/or configurations that may be

US 9,280,335 B2

31

suitable for use with computer system/server 3602 include,
but are not limited to, personal computer systems, server
computer systems, thin clients, thick clients, hand-held or
laptop devices, multiprocessor systems, microprocessor-
based systems, set top boxes, programmable consumer elec-
tronics, network PCs, minicomputer systems, mainframe
computer systems, and distributed cloud computing environ-
ments that include any of the above systems or devices, and
the like.

Computer system/server 3602 may be described in the
general context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 3602 may be
practiced in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 36, computer systeny/server 3602 in
cloud computing node 3600 is shown in the form of a general-
purpose computing device. The components of computer sys-
tem/server 3602 may include, but are not limited to, one or
more processors or processing units 3604, a system memory
3606, and a bus 3608 that couples various system components
including system memory 3606 to processor 3604.

Bus 3608 represents one or more of any of several types of
bus structures, including a memory bus or memory controller,
aperipheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 3602 typically includes a variety
of computer system readable media. Such media may be any
available media that is accessible by computer system/server
3602, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 3606, in one embodiment, comprises the
interactive environment 110 and its components as shown in
FIG. 3. These one or more components of the interactive
environment 110 can also be implemented in hardware as
well. The system memory 3606 can include computer system
readable media in the form of volatile memory, such as ran-
dom access memory (RAM) 3610 and/or cache memory
3612. Computer system/server 3602 may further include
other removable/non-removable, volatile/non-volatile com-
puter system storage media. By way of example only, storage
system 3614 can be provided for reading from and writing to
a non-removable, non-volatile magnetic media (not shown
and typically called a “hard drive). Although not shown, a
magnetic disk drive for reading from and writing to a remov-
able, non-volatile magnetic disk (e.g., a “floppy disk™), and an
optical disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media can be provided. In such instances, each
can be connected to bus 3608 by one or more data media
interfaces. As will be further depicted and described below,
memory 3606 may include at least one program product
having a set (e.g., at least one) of program modules that are
configured to carry out the functions of embodiments of the
invention.

20

35

40

45

50

55

32

Program/utility 3616, having a set (at least one) of program
modules 3618, may be stored in memory 3606 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an implemen-
tation of a networking environment. Program modules 3618
generally carry out the functions and/or methodologies of
embodiments of the invention as described herein.

Computer system/server 3602 may also communicate with
one or more external devices 3620 such as a keyboard, a
pointing device, a display 3622, etc.; one or more devices that
enable a user to interact with computer systeny/server 3602;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 3602 to communicate with
one or more other computing devices. Such communication
can occur via I/O interfaces 3624. Still yet, computer system/
server 3602 can communicate with one or more networks
such as a local area network (LAN), a general wide area
network (WAN), and/or a public network (e.g., the Internet)
via network adapter 3626. As depicted, network adapter 3626
communicates with the other components of computer sys-
tem/server 3602 via bus 3608. It should be understood that
although not shown, other hardware and/or software compo-
nents could be used in conjunction with computer system/
server 3602. Examples, include, but are not limited to: micro-
code, device drivers, redundant processing units, external
disk drive arrays, RAID systems, tape drives, and data archi-
val storage systems, etc.

Referring now to FIG. 37, illustrative cloud computing
environment 3702 is depicted. As shown, cloud computing
environment 3702 comprises one or more cloud computing
nodes 3600 with which local computing devices used by
cloud consumers, such as, for example, personal digital assis-
tant (PDA) or cellular telephone 3704A, desktop computer
37068, laptop computer 3708, and/or automobile computer
system 3710 may communicate. Nodes 10 may communicate
with one another. They may be grouped (not shown) physi-
cally or virtually, in one or more networks, such as Private,
Community, Public, or Hybrid clouds as described herein-
above, or a combination thereof. This allows cloud comput-
ing environment 3702 to offer infrastructure, platforms and/
or software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It is
understood that the types of computing devices 3704, 3706,
3708, 3710 shown in FIG. 37 are intended to be illustrative
only and that computing nodes 3600 and cloud computing
environment 3702 can communicate with any type of com-
puterized device over any type of network and/or network
addressable connection (e.g., using a web browser).

Referring now to FIG. 38, a set of functional abstraction
layers provided by cloud computing environment 3702 (FIG.
37) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 38 are
intended to be illustrative only and embodiments of the inven-
tion are not limited thereto. As depicted, the following layers
and corresponding functions are provided:

Hardware and software layer 3802 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architecture
based servers, in one example IBM pSeries® systems; IBM
xSeries® systems; IBM BladeCenter® systems; storage
devices; networks and networking components. Examples of
software components include network application server
software, in one example IBM WebSphere® application

US 9,280,335 B2

33

server software; and database software, in one example IBM
DB2® database software. (IBM, zSeries, pSeries, xSeries,
BladeCenter, WebSphere, and DB2 are trademarks of Inter-
national Business Machines Corporation registered in many
jurisdictions worldwide)

Virtualization layer 3804 provides an abstraction layer
from which the following examples of virtual entities may be
provided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 3806 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as protec-
tion for data and other resources. User portal provides access
to the cloud computing environment for consumers and sys-
tem administrators. Service level management provides
cloud computing resource allocation and management such
that required service levels are met. Service Level Agreement
(SLA) planning and fulfillment provide pre-arrangement for,
and procurement of, cloud computing resources for which a
future requirement is anticipated in accordance with an SLA.

Workloads layer 3808 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; transaction
processing; and composable software bundle and virtual
image asset design and creation.

Non-Limiting Examples

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method,
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.

10

15

20

25

30

35

40

45

50

55

60

65

34

In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention have been discussed above
with reference to flowchart illustrations and/or block dia-
grams of methods, apparatus (systems) and computer pro-
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra-
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com-
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for

US 9,280,335 B2

35

implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The description of the present invention has been presented
for purposes of illustration and description, but is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the invention. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention and the practical application, and to
enable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica-
tions as are suited to the particular use contemplated.

REFERENCES

It should be noted that various aspects of one or more
embodiments of the present invention discussed above are
further discussed in greater detail in one or more of the fol-
lowing references:

“Pattern based SOA deployment”, W Arnold, T Eilam, M
Kalantar, A Konstantinou, A Totok, Service-Oriented
Computing—ICSOC 2007

Pattern-based Composite Application Deployment™; “Pattern
Based Composite Application Deployment”, Tamar Filam,
Michael Elder, Alexander Konstantinou, Ed Snible, sub-
mitted for publication in IM 2011 (The 12th IFIP/IEEE
International Symposium on Integrated Network Manage-
ment (IM 2011)), not yet published;

U.S. patent application Ser. No. 12/476,0006, filed Jun. 1,2009
entitled “VIRTUAL SOLUTION COMPOSITION AND
DEPLOYMENT SYSTEM AND METHOD”, Inventors:
William C. Arnold et al.;

U.S. Patent Publication No. US2010-0070449, Filing Date:
Sep. 12, 2008;

U.S. Patent Publication No. US2009-0319239, Filing Date:
Jun. 18, 2008;

U.S. Patent Publication No. US2008-0235506 Filing Date:
Jun. 2, 2008; and

U.S. Patent Publication No. US2008-0244595, Filing Date:
Mar. 29, 2007.

The collective teachings of these references is hereby
incorporated by reference in its entirety.

What is claimed is:
1. A method for creating a composable software bundle as
part of a virtual image asset, the method comprising:

retrieving a semantic representation of a set of software
modules;

retrieving a first set of metadata and a first set of artifacts
comprising a set of executable instructions, each execut-
able instructions in the set of executable instructions is to
be performed on the set of software modules during at
least one virtual image life-cycle phase in a set of virtual
image life-cycle phases;

10

20

25

30

35

40

45

50

55

60

65

36

storing the semantic representation and the first set of arti-
facts, in a composable software bundle associated with
the first set of metadata;

receiving a selection of a virtual image asset, wherein the
virtual image asset comprises one or more virtual image
disks, a second set of metadata, and a second set of
artifacts comprising a second set of executable instruc-
tions associated with a second set of operations, wherein
the composable software bundle is independent of a
target environment, is separate and distinct from the
virtual image asset, and is installed on the virtual image
asset as part of creating a new virtual image asset based
on the composable software bundle and the virtual
image asset; and

creating a new virtual image asset based on the composable
software bundle and the virtual image asset, the new
virtual image asset comprising a set of software modules
installed by the composable software bundle on the vir-
tual image asset, the new virtual image asset comprising
metadata that is based on the composable software
bundle and the virtual image asset, the new virtual image
asset further comprising a third set of artifacts compris-
ing a third set of executable instructions associated with
athird set of operations that is based on the composable
software bundle and the second set of artifacts from the
virtual image asset, and wherein each executable
instruction in the third set of executable instructions
being executed at the virtual image life-cycle phase
associated with an operation in the third set of operations
that is associated with each executable instruction in the
third set of executable instructions.

2. The method of claim 1, wherein the semantic represen-
tation semantically represents a set of capabilities and a set of
requirements associated with the set of software modules.

3. The method of claim 1, wherein the set of executable
instructions comprises at least one of:

a configuration script;

an uninstall script;

a delete file script; and

an add file script.

4. The method of claim 1, wherein the composable soft-
ware bundle is at least one of:

reusable with a plurality of virtual image assets; and

reusable across a plurality of computing environments.

5. The method of claim 1, wherein the first set of metadata
further comprises:

a set of operation descriptions for each operation in the set

of operations.

6. The method of claim 5, wherein the set of operation
descriptions comprises at least one of:

a set of requirements for an operation in the set of opera-

tions;

a description of an execution container for the operation;

a description of how the operation affects the set of soft-
ware modules;

a set of relationships between a set of parameters associ-
ated with the operation and a configuration of the set of
software modules represented by the semantic represen-
tation; and

a set of ordering constraints associated with the set of
operations.

7. The method of claim 1, wherein the set of virtual image

life-cycle phases comprises at least one of:

a virtual image build life-cycle phase;

a virtual image capture life-cycle phase; and

a virtual image deploy life-cycle phase.

US 9,280,335 B2

37

8. The method of claim 1, wherein the set of executable
instructions is a script that installs the set of software modules
on the virtual image during at least one of the set of virtual
image life-cycle phases associated with the script.

9. A non-transitory computer readable storage medium
configured to create a composable software bundle as part of
a virtual image asset, the non-transitory computer readable
storage medium comprising instructions configured to per-
form a method comprising:

retrieving a semantic representation of a set of software

modules;

retrieving a first set of metadata and a first set of artifacts

comprising a set of executable instructions, each execut-
able instructions in the set of executable instructions is to
be performed on the set of software modules during at
least one virtual image life-cycle phase in a set of virtual
image life-cycle phases;

storing the semantic representation and the first set of arti-

facts, in a composable software bundle associated with
the first set of metadata;

receiving a selection of a virtual image asset, wherein the

virtual image asset comprises one or more virtual image
disks, a second set of metadata, and a second set of
artifacts comprising a second set of executable instruc-
tions associated with a second set of operations, wherein
the composable software bundle is independent of a
target environment, is separate and distinct from the
virtual image asset, and is installed on the virtual image
asset as part of creating a new virtual image asset based
on the composable software bundle and the virtual
image asset; and

creating a new virtual image asset based on the composable

software bundle and the virtual image asset, the new
virtual image asset comprising a set of software modules
installed by the composable software bundle on the vir-
tual image asset, the new virtual image asset comprising
metadata that is based on the composable software
bundle and the virtual image asset, the new virtual image
asset further comprising a third set of artifacts compris-
ing a third set of executable instructions associated with
athird set of operations that is based on the composable
software bundle and the second set of artifacts from the
virtual image asset, and wherein each executable
instruction in the third set of executable instructions
being executed at the virtual image life-cycle phase
associated with an operation in the third set of operations
that is associated with each executable instruction in the
third set of executable instructions.

10. The computer readable storage medium of claim 9,
wherein the semantic representation semantically represents
a set of capabilities and a set of requirements associated with
the set of software modules.

11. The computer readable storage medium of claim 9,
wherein the set of executable instructions comprises at least
one of:

a configuration script;

an uninstall script;

a delete file script; and

an add file script.

12. The computer readable storage medium of claim 9,
wherein the composable software bundle is at least one of:

reusable with a plurality of virtual image assets; and

reusable across a plurality of computing environments.

13. The computer readable storage medium of claim 9,
wherein the first set of metadata further comprises:

a set of operation descriptions for each operation in the set

of operations.

5

10

15

20

25

30

35

40

45

50

55

60

65

38

14. The computer readable storage medium of claim 13,
wherein the set of operation descriptions comprises at least
one of:

a set of requirements for an operation in the set of opera-

tions;
a description of an execution container for the operation;
a description of how the operation affects the set of soft-
ware modules;
a set of relationships between a set of parameters associ-
ated with the operation and a configuration of the set of
software modules represented by the semantic represen-
tation; and
a set of ordering constraints associated with the set of
operations.
15. The computer readable storage medium of claim 9,
wherein the set of virtual image life-cycle phases comprises at
least one of:
a virtual image build life-cycle phase;
a virtual image capture life-cycle phase; and
a virtual image deploy life-cycle phase.
16. The computer readable storage medium of claim 9,
wherein the set of executable instructions is a script that
installs the set of software modules on the virtual image
during at least one of the set of virtual image life-cycle phases
associated with the script.
17. A system configured to create a composable software
bundle as part of a virtual image asset, the system comprising:
a memory;
a processor, communicatively couple with the memory;
and
auser interface, communicatively coupled with the proces-
sor and the memory, for displaying information to a user
and for receiving user input from the user, the processor
being adapted to perform a method comprising:
retrieving a semantic representation of a set of software
modules,

retrieving a first set of metadata and a first set of artifacts
comprising a set of executable instructions, each
executable instructions in the set of executable
instructions is to be performed on the set of software
modules during at least one virtual image life-cycle
phase in a set of virtual image life-cycle phases;

storing the semantic representation and the first set of
artifacts, in a composable software bundle associated
with the first set of metadata;

receiving a selection of a virtual image asset, wherein
the virtual image asset comprises one or more virtual
image disks, a second set of metadata, and a second
set of artifacts comprising a second set of executable
instructions associated with a second set of opera-
tions, wherein the composable software bundle is
independent of a target environment, is separate and
distinct from the virtual image asset, and is installed
on the virtual image asset as part of creating a new
virtual image asset based on the composable software
bundle and the virtual image asset; and

creating a new virtual image asset based on the compos-
able software bundle and the virtual image asset, the
new virtual image asset comprising a set of software
modules installed by the composable software bundle
on the virtual image asset, the new virtual image asset
comprising metadata that is based on the composable
software bundle and the virtual image asset, the new
virtual image asset further comprising a third set of
artifacts comprising a third set of executable instruc-
tions associated with a third set of operations that is
based on the composable software bundle and the

US 9,280,335 B2

39

second set of artifacts from the virtual image asset,
and wherein each executable instruction in the third
set of executable instructions being executed at the
virtual image life-cycle phase associated with an
operation in the third set of operations that is associ-
ated with each executable instruction in the third set of
executable instructions.

18. The system of claim 17, wherein the first set of meta-
data further comprises:

a set of operation descriptions for each operation in the set
of operations, and wherein the set of operation descrip-
tions comprises at least one of:

a set of requirements for an operation in the set of opera-
tions;

a description of an execution container for the operation;

a description of how the operation affects the set of soft-
ware modules;

a set of relationships between a set of parameters associ-
ated with the operation and a configuration of the set of
software modules represented by the semantic represen-
tation; and

a set of ordering constraints associated with the set of
operations.

19. The system of claim 17, wherein the set of virtual image

life-cycle phases comprises at least one of:
a virtual image build life-cycle phase;
a virtual image capture life-cycle phase; and
a virtual image deploy life-cycle phase.
20. A computer program product configured to create a
composable software bundle as part of a virtual image asset,
the computer program product comprising:
a non-transitory storage medium readable by a processing
circuit and storing instructions for execution by the pro-
cessing circuit for performing a method comprising:
retrieving a semantic representation of a set of software
modules;

retrieving a first set of metadata and a first set of artifacts
comprising a set of executable instructions, each
executable instructions in the set of executable
instructions is to be performed on the set of software
modules during at least one virtual image life-cycle
phase in a set of virtual image life-cycle phases;

storing the semantic representation and the first set of
artifacts, in a composable software bundle associated
with the first set of metadata;

receiving a selection of a virtual image asset, wherein
the virtual image asset comprises one or more virtual
image disks, a second set of metadata, and a second
set of artifacts comprising a second set of executable
instructions associated with a second set of opera-
tions, wherein the composable software bundle is
independent of a target environment, is separate and
distinct from the virtual image asset, and is installed
on the virtual image asset as part of creating a new

25

35

40

45

50

40

virtual image asset based on the composable software
bundle and the virtual image asset; and

creating a new virtual image asset based on the compos-
able software bundle and the virtual image asset, the
new virtual image asset comprising a set of software
modules installed by the composable software bundle
on the virtual image asset, the new virtual image asset
comprising metadata that is based on the composable
software bundle and the virtual image asset, the new
virtual image asset further comprising a third set of
artifacts comprising a third set of executable instruc-
tions associated with a third set of operations that is
based on the composable software bundle and the
second set of artifacts from the virtual image asset,
and wherein each executable instruction in the third
set of executable instructions being executed at the
virtual image life-cycle phase associated with an
operation in the third set of operations that is associ-
ated with each executable instruction in the third set of
executable instructions.

21. The computer program product of claim 20, wherein
the semantic representation semantically represents a set of
capabilities and a set of requirements associated with the set
of software modules.

22. The computer program product of claim 20, wherein
the first set of metadata further comprises:

a set of operation descriptions for each operation in the set
of operations, and wherein the set of operation descrip-
tions comprises at least one of:

a set of requirements for an operation in the set of opera-
tions;

a description of an execution container for the operation;

a description of how the operation affects the set of soft-
ware modules;

a set of relationships between a set of parameters associ-
ated with the operation and a configuration of the set of
software modules represented by the semantic represen-
tation; and

a set of ordering constraints associated with the set of
operations.

23. The computer program product of claim 20, wherein
the set of virtual image life-cycle phases comprises at least
one of:

a configuration script;

an uninstall script;

a delete file script; and

an add file script.

24. The computer program product of claim 20, wherein
the set of executable instructions is a script that installs the set
of software modules on the virtual image during at least one
of the set of virtual image life-cycle phases associated with
the script.

